Bhore, Sujoy ;
Filtser, Arnold ;
Khodabandeh, Hadi ;
Tóth, Csaba D.
Online Spanners in Metric Spaces
Abstract
Given a metric space ℳ = (X,δ), a weighted graph G over X is a metric tspanner of ℳ if for every u,v ∈ X, δ(u,v) ≤ δ_G(u,v) ≤ t⋅ δ(u,v), where δ_G is the shortest path metric in G. In this paper, we construct spanners for finite sets in metric spaces in the online setting. Here, we are given a sequence of points (s₁, …, s_n), where the points are presented one at a time (i.e., after i steps, we have seen S_i = {s₁, … , s_i}). The algorithm is allowed to add edges to the spanner when a new point arrives, however, it is not allowed to remove any edge from the spanner. The goal is to maintain a tspanner G_i for S_i for all i, while minimizing the number of edges, and their total weight.
Under the L₂norm in ℝ^d for arbitrary constant d ∈ ℕ, we present an online (1+ε)spanner algorithm with competitive ratio O_d(ε^{d} log n), improving the previous bound of O_d(ε^{(d+1)}log n). Moreover, the spanner maintained by the algorithm has O_d(ε^{1d}log ε^{1})⋅ n edges, almost matching the (offline) optimal bound of O_d(ε^{1d})⋅ n. In the plane, a tighter analysis of the same algorithm provides an almost quadratic improvement of the competitive ratio to O(ε^{3/2}logε^{1}log n), by comparing the online spanner with an instanceoptimal spanner directly, bypassing the comparison to an MST (i.e., lightness). As a counterpart, we design a sequence of points that yields a Ω_d(ε^{d}) lower bound for the competitive ratio for online (1+ε)spanner algorithms in ℝ^d under the L₁norm.
Then we turn our attention to online spanners in general metrics. Note that, it is not possible to obtain a spanner with stretch less than 3 with a subquadratic number of edges, even in the offline setting, for general metrics. We analyze an online version of the celebrated greedy spanner algorithm, dubbed ordered greedy. With stretch factor t = (2k1)(1+ε) for k ≥ 2 and ε ∈ (0,1), we show that it maintains a spanner with O(ε^{1}logε^{1})⋅ n^{1+1/k} edges and O(ε^{1}n^{1/k}log² n) lightness for a sequence of n points in a metric space. We show that these bounds cannot be significantly improved, by introducing an instance that achieves an Ω(1/k⋅ n^{1/k}) competitive ratio on both sparsity and lightness. Furthermore, we establish the tradeoff among stretch, number of edges and lightness for points in ultrametrics, showing that one can maintain a (2+ε)spanner for ultrametrics with O(ε^{1}logε^{1})⋅ n edges and O(ε^{2}) lightness.
BibTeX  Entry
@InProceedings{bhore_et_al:LIPIcs.ESA.2022.18,
author = {Bhore, Sujoy and Filtser, Arnold and Khodabandeh, Hadi and T\'{o}th, Csaba D.},
title = {{Online Spanners in Metric Spaces}},
booktitle = {30th Annual European Symposium on Algorithms (ESA 2022)},
pages = {18:118:20},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {9783959772471},
ISSN = {18688969},
year = {2022},
volume = {244},
editor = {Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
publisher = {Schloss Dagstuhl  LeibnizZentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2022/16956},
URN = {urn:nbn:de:0030drops169564},
doi = {10.4230/LIPIcs.ESA.2022.18},
annote = {Keywords: spanner, online algorithm, lightness, sparsity, minimum weight}
}
01.09.2022
Keywords: 

spanner, online algorithm, lightness, sparsity, minimum weight 
Seminar: 

30th Annual European Symposium on Algorithms (ESA 2022)

Issue date: 

2022 
Date of publication: 

01.09.2022 