pdf-format: |
|
@InProceedings{apriceno_et_al:LIPIcs.TIME.2022.12, author = {Apriceno, Gianluca and Passerini, Andrea and Serafini, Luciano}, title = {{A Neuro-Symbolic Approach for Real-World Event Recognition from Weak Supervision}}, booktitle = {29th International Symposium on Temporal Representation and Reasoning (TIME 2022)}, pages = {12:1--12:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-262-4}, ISSN = {1868-8969}, year = {2022}, volume = {247}, editor = {Artikis, Alexander and Posenato, Roberto and Tonetta, Stefano}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/opus/volltexte/2022/17259}, URN = {urn:nbn:de:0030-drops-172594}, doi = {10.4230/LIPIcs.TIME.2022.12}, annote = {Keywords: structured events, temporal event detection, neuro-symbolic integration} }
Keywords: | structured events, temporal event detection, neuro-symbolic integration | |
Seminar: | 29th International Symposium on Temporal Representation and Reasoning (TIME 2022) | |
Issue date: | 2022 | |
Date of publication: | 29.10.2022 | |
Supplementary Material: | Software (Source Code): https://github.com/Gianlu94/A-neuro-symbolic-approach-for-real-world-event-recognition-from-weak-supervision |