Search Results

Documents authored by An, Shinwoo


Document
ETH-Tight Algorithm for Cycle Packing on Unit Disk Graphs

Authors: Shinwoo An and Eunjin Oh

Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)


Abstract
In this paper, we consider the Cycle Packing problem on a unit disk graph defined as follows. Given a unit disk graph G with n vertices and an integer k, the goal is to find a set of k vertex-disjoint cycles of G if it exists. Our algorithm runs in time 2^O(√k) n^O(1). This improves the 2^O(√klog k) n^O(1)-time algorithm by Fomin et al. [SODA 2012, ICALP 2017]. Moreover, our algorithm is optimal assuming the exponential-time hypothesis.

Cite as

Shinwoo An and Eunjin Oh. ETH-Tight Algorithm for Cycle Packing on Unit Disk Graphs. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 7:1-7:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{an_et_al:LIPIcs.SoCG.2024.7,
  author =	{An, Shinwoo and Oh, Eunjin},
  title =	{{ETH-Tight Algorithm for Cycle Packing on Unit Disk Graphs}},
  booktitle =	{40th International Symposium on Computational Geometry (SoCG 2024)},
  pages =	{7:1--7:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-316-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{293},
  editor =	{Mulzer, Wolfgang and Phillips, Jeff M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.7},
  URN =		{urn:nbn:de:0030-drops-199522},
  doi =		{10.4230/LIPIcs.SoCG.2024.7},
  annote =	{Keywords: Unit disk graphs, cycle packing, tree decomposition, parameterized algorithm}
}
Document
Feedback Vertex Set on Geometric Intersection Graphs

Authors: Shinwoo An and Eunjin Oh

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
In this paper, we present an algorithm for computing a feedback vertex set of a unit disk graph of size k, if it exists, which runs in time 2^O(√k)(n+m), where n and m denote the numbers of vertices and edges, respectively. This improves the 2^O(√klog k) n^O(1)-time algorithm for this problem on unit disk graphs by Fomin et al. [ICALP 2017]. Moreover, our algorithm is optimal assuming the exponential-time hypothesis. Also, our algorithm can be extended to handle geometric intersection graphs of similarly sized fat objects without increasing the running time.

Cite as

Shinwoo An and Eunjin Oh. Feedback Vertex Set on Geometric Intersection Graphs. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 47:1-47:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{an_et_al:LIPIcs.ISAAC.2021.47,
  author =	{An, Shinwoo and Oh, Eunjin},
  title =	{{Feedback Vertex Set on Geometric Intersection Graphs}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{47:1--47:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.47},
  URN =		{urn:nbn:de:0030-drops-154807},
  doi =		{10.4230/LIPIcs.ISAAC.2021.47},
  annote =	{Keywords: Feedback vertex set, intersection graphs, parameterized algorithm}
}