Published in: LIPIcs, Volume 214, 16th International Symposium on Parameterized and Exact Computation (IPEC 2021)
Júlio Araújo, Marin Bougeret, Victor Campos, and Ignasi Sau. A New Framework for Kernelization Lower Bounds: The Case of Maximum Minimal Vertex Cover. In 16th International Symposium on Parameterized and Exact Computation (IPEC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 214, pp. 4:1-4:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
@InProceedings{araujo_et_al:LIPIcs.IPEC.2021.4, author = {Ara\'{u}jo, J\'{u}lio and Bougeret, Marin and Campos, Victor and Sau, Ignasi}, title = {{A New Framework for Kernelization Lower Bounds: The Case of Maximum Minimal Vertex Cover}}, booktitle = {16th International Symposium on Parameterized and Exact Computation (IPEC 2021)}, pages = {4:1--4:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-216-7}, ISSN = {1868-8969}, year = {2021}, volume = {214}, editor = {Golovach, Petr A. and Zehavi, Meirav}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2021.4}, URN = {urn:nbn:de:0030-drops-153879}, doi = {10.4230/LIPIcs.IPEC.2021.4}, annote = {Keywords: Maximum minimal vertex cover, parameterized complexity, polynomial kernel, kernelization lower bound, Erd\H{o}s-Hajnal property, induced subgraphs} }
Published in: LIPIcs, Volume 115, 13th International Symposium on Parameterized and Exact Computation (IPEC 2018)
Júlio Araújo, Victor A. Campos, Carlos Vinícius G. C. Lima, Vinícius Fernandes dos Santos, Ignasi Sau, and Ana Silva. Dual Parameterization of Weighted Coloring. In 13th International Symposium on Parameterized and Exact Computation (IPEC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 115, pp. 12:1-12:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@InProceedings{araujo_et_al:LIPIcs.IPEC.2018.12, author = {Ara\'{u}jo, J\'{u}lio and Campos, Victor A. and Lima, Carlos Vin{\'\i}cius G. C. and Fernandes dos Santos, Vin{\'\i}cius and Sau, Ignasi and Silva, Ana}, title = {{Dual Parameterization of Weighted Coloring}}, booktitle = {13th International Symposium on Parameterized and Exact Computation (IPEC 2018)}, pages = {12:1--12:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-084-2}, ISSN = {1868-8969}, year = {2019}, volume = {115}, editor = {Paul, Christophe and Pilipczuk, Michal}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2018.12}, URN = {urn:nbn:de:0030-drops-102134}, doi = {10.4230/LIPIcs.IPEC.2018.12}, annote = {Keywords: weighted coloring, max coloring, parameterized complexity, dual parameterization, FPT algorithms, polynomial kernels, split graphs, interval graphs} }
Published in: LIPIcs, Volume 25, 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014)
Julio Araujo, Nicolas Nisse, and Stéphane Pérennes. Weighted Coloring in Trees. In 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 25, pp. 75-86, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)
@InProceedings{araujo_et_al:LIPIcs.STACS.2014.75, author = {Araujo, Julio and Nisse, Nicolas and P\'{e}rennes, St\'{e}phane}, title = {{Weighted Coloring in Trees}}, booktitle = {31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014)}, pages = {75--86}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-65-1}, ISSN = {1868-8969}, year = {2014}, volume = {25}, editor = {Mayr, Ernst W. and Portier, Natacha}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2014.75}, URN = {urn:nbn:de:0030-drops-44484}, doi = {10.4230/LIPIcs.STACS.2014.75}, annote = {Keywords: Weighted Coloring, Max Coloring, Exponential Time Hypothesis, 3-SAT} }
Published in: LIPIcs, Volume 214, 16th International Symposium on Parameterized and Exact Computation (IPEC 2021)
Júlio Araújo, Marin Bougeret, Victor Campos, and Ignasi Sau. A New Framework for Kernelization Lower Bounds: The Case of Maximum Minimal Vertex Cover. In 16th International Symposium on Parameterized and Exact Computation (IPEC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 214, pp. 4:1-4:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
@InProceedings{araujo_et_al:LIPIcs.IPEC.2021.4, author = {Ara\'{u}jo, J\'{u}lio and Bougeret, Marin and Campos, Victor and Sau, Ignasi}, title = {{A New Framework for Kernelization Lower Bounds: The Case of Maximum Minimal Vertex Cover}}, booktitle = {16th International Symposium on Parameterized and Exact Computation (IPEC 2021)}, pages = {4:1--4:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-216-7}, ISSN = {1868-8969}, year = {2021}, volume = {214}, editor = {Golovach, Petr A. and Zehavi, Meirav}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2021.4}, URN = {urn:nbn:de:0030-drops-153879}, doi = {10.4230/LIPIcs.IPEC.2021.4}, annote = {Keywords: Maximum minimal vertex cover, parameterized complexity, polynomial kernel, kernelization lower bound, Erd\H{o}s-Hajnal property, induced subgraphs} }
Published in: LIPIcs, Volume 115, 13th International Symposium on Parameterized and Exact Computation (IPEC 2018)
Júlio Araújo, Victor A. Campos, Carlos Vinícius G. C. Lima, Vinícius Fernandes dos Santos, Ignasi Sau, and Ana Silva. Dual Parameterization of Weighted Coloring. In 13th International Symposium on Parameterized and Exact Computation (IPEC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 115, pp. 12:1-12:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@InProceedings{araujo_et_al:LIPIcs.IPEC.2018.12, author = {Ara\'{u}jo, J\'{u}lio and Campos, Victor A. and Lima, Carlos Vin{\'\i}cius G. C. and Fernandes dos Santos, Vin{\'\i}cius and Sau, Ignasi and Silva, Ana}, title = {{Dual Parameterization of Weighted Coloring}}, booktitle = {13th International Symposium on Parameterized and Exact Computation (IPEC 2018)}, pages = {12:1--12:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-084-2}, ISSN = {1868-8969}, year = {2019}, volume = {115}, editor = {Paul, Christophe and Pilipczuk, Michal}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2018.12}, URN = {urn:nbn:de:0030-drops-102134}, doi = {10.4230/LIPIcs.IPEC.2018.12}, annote = {Keywords: weighted coloring, max coloring, parameterized complexity, dual parameterization, FPT algorithms, polynomial kernels, split graphs, interval graphs} }
Published in: LIPIcs, Volume 25, 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014)
Julio Araujo, Nicolas Nisse, and Stéphane Pérennes. Weighted Coloring in Trees. In 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 25, pp. 75-86, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)
@InProceedings{araujo_et_al:LIPIcs.STACS.2014.75, author = {Araujo, Julio and Nisse, Nicolas and P\'{e}rennes, St\'{e}phane}, title = {{Weighted Coloring in Trees}}, booktitle = {31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014)}, pages = {75--86}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-65-1}, ISSN = {1868-8969}, year = {2014}, volume = {25}, editor = {Mayr, Ernst W. and Portier, Natacha}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2014.75}, URN = {urn:nbn:de:0030-drops-44484}, doi = {10.4230/LIPIcs.STACS.2014.75}, annote = {Keywords: Weighted Coloring, Max Coloring, Exponential Time Hypothesis, 3-SAT} }
Feedback for Dagstuhl Publishing