Search Results

Documents authored by Ashvinkumar, Vikrant


Document
RANDOM
Evaluating Stability in Massive Social Networks: Efficient Streaming Algorithms for Structural Balance

Authors: Vikrant Ashvinkumar, Sepehr Assadi, Chengyuan Deng, Jie Gao, and Chen Wang

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
Structural balance theory studies stability in networks. Given a n-vertex complete graph G = (V,E) whose edges are labeled positive or negative, the graph is considered balanced if every triangle either consists of three positive edges (three mutual "friends"), or one positive edge and two negative edges (two "friends" with a common "enemy"). From a computational perspective, structural balance turns out to be a special case of correlation clustering with the number of clusters at most two. The two main algorithmic problems of interest are: (i) detecting whether a given graph is balanced, or (ii) finding a partition that approximates the frustration index, i.e., the minimum number of edge flips that turn the graph balanced. We study these problems in the streaming model where edges are given one by one and focus on memory efficiency. We provide randomized single-pass algorithms for: (i) determining whether an input graph is balanced with O(log n) memory, and (ii) finding a partition that induces a (1 + ε)-approximation to the frustration index with O(n ⋅ polylog(n)) memory. We further provide several new lower bounds, complementing different aspects of our algorithms such as the need for randomization or approximation. To obtain our main results, we develop a method using pseudorandom generators (PRGs) to sample edges between independently-chosen vertices in graph streaming. Furthermore, our algorithm that approximates the frustration index improves the running time of the state-of-the-art correlation clustering with two clusters (Giotis-Guruswami algorithm [SODA 2006]) from n^O(1/ε²) to O(n²log³n/ε² + n log n ⋅ (1/ε)^O(1/ε⁴)) time for (1+ε)-approximation. These results may be of independent interest.

Cite as

Vikrant Ashvinkumar, Sepehr Assadi, Chengyuan Deng, Jie Gao, and Chen Wang. Evaluating Stability in Massive Social Networks: Efficient Streaming Algorithms for Structural Balance. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 58:1-58:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{ashvinkumar_et_al:LIPIcs.APPROX/RANDOM.2023.58,
  author =	{Ashvinkumar, Vikrant and Assadi, Sepehr and Deng, Chengyuan and Gao, Jie and Wang, Chen},
  title =	{{Evaluating Stability in Massive Social Networks: Efficient Streaming Algorithms for Structural Balance}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{58:1--58:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.58},
  URN =		{urn:nbn:de:0030-drops-188830},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.58},
  annote =	{Keywords: Streaming algorithms, structural balance, pseudo-randomness generator}
}
Document
Local Routing in Sparse and Lightweight Geometric Graphs

Authors: Vikrant Ashvinkumar, Joachim Gudmundsson, Christos Levcopoulos, Bengt J. Nilsson, and André van Renssen

Published in: LIPIcs, Volume 149, 30th International Symposium on Algorithms and Computation (ISAAC 2019)


Abstract
Online routing in a planar embedded graph is central to a number of fields and has been studied extensively in the literature. For most planar graphs no O(1)-competitive online routing algorithm exists. A notable exception is the Delaunay triangulation for which Bose and Morin [Bose and Morin, 2004] showed that there exists an online routing algorithm that is O(1)-competitive. However, a Delaunay triangulation can have Omega(n) vertex degree and a total weight that is a linear factor greater than the weight of a minimum spanning tree. We show a simple construction, given a set V of n points in the Euclidean plane, of a planar geometric graph on V that has small weight (within a constant factor of the weight of a minimum spanning tree on V), constant degree, and that admits a local routing strategy that is O(1)-competitive. Moreover, the technique used to bound the weight works generally for any planar geometric graph whilst preserving the admission of an O(1)-competitive routing strategy.

Cite as

Vikrant Ashvinkumar, Joachim Gudmundsson, Christos Levcopoulos, Bengt J. Nilsson, and André van Renssen. Local Routing in Sparse and Lightweight Geometric Graphs. In 30th International Symposium on Algorithms and Computation (ISAAC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 149, pp. 30:1-30:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{ashvinkumar_et_al:LIPIcs.ISAAC.2019.30,
  author =	{Ashvinkumar, Vikrant and Gudmundsson, Joachim and Levcopoulos, Christos and Nilsson, Bengt J. and van Renssen, Andr\'{e}},
  title =	{{Local Routing in Sparse and Lightweight Geometric Graphs}},
  booktitle =	{30th International Symposium on Algorithms and Computation (ISAAC 2019)},
  pages =	{30:1--30:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-130-6},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{149},
  editor =	{Lu, Pinyan and Zhang, Guochuan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2019.30},
  URN =		{urn:nbn:de:0030-drops-115269},
  doi =		{10.4230/LIPIcs.ISAAC.2019.30},
  annote =	{Keywords: Computational geometry, Spanners, Routing}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail