Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)
Mitchell Black and Amir Nayyeri. Hodge Decomposition and General Laplacian Solvers for Embedded Simplicial Complexes. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 23:1-23:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{black_et_al:LIPIcs.ICALP.2022.23, author = {Black, Mitchell and Nayyeri, Amir}, title = {{Hodge Decomposition and General Laplacian Solvers for Embedded Simplicial Complexes}}, booktitle = {49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)}, pages = {23:1--23:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-235-8}, ISSN = {1868-8969}, year = {2022}, volume = {229}, editor = {Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.23}, URN = {urn:nbn:de:0030-drops-163641}, doi = {10.4230/LIPIcs.ICALP.2022.23}, annote = {Keywords: Computational Topology, Laplacian solvers, Combinatorial Laplacian, Hodge decomposition, Parameterized Complexity} }
Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)
Mitchell Black, Nello Blaser, Amir Nayyeri, and Erlend Raa Vågset. ETH-Tight Algorithms for Finding Surfaces in Simplicial Complexes of Bounded Treewidth. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 17:1-17:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{black_et_al:LIPIcs.SoCG.2022.17, author = {Black, Mitchell and Blaser, Nello and Nayyeri, Amir and V\r{a}gset, Erlend Raa}, title = {{ETH-Tight Algorithms for Finding Surfaces in Simplicial Complexes of Bounded Treewidth}}, booktitle = {38th International Symposium on Computational Geometry (SoCG 2022)}, pages = {17:1--17:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-227-3}, ISSN = {1868-8969}, year = {2022}, volume = {224}, editor = {Goaoc, Xavier and Kerber, Michael}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.17}, URN = {urn:nbn:de:0030-drops-160253}, doi = {10.4230/LIPIcs.SoCG.2022.17}, annote = {Keywords: Computational Geometry, Surface Recognition, Treewidth, Hasse Diagram, Simplicial Complexes, Low-Dimensional Topology, Parameterized Complexity, Computational Complexity} }
Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)
Mitchell Black and William Maxwell. Effective Resistance and Capacitance in Simplicial Complexes and a Quantum Algorithm. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 31:1-31:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
@InProceedings{black_et_al:LIPIcs.ISAAC.2021.31, author = {Black, Mitchell and Maxwell, William}, title = {{Effective Resistance and Capacitance in Simplicial Complexes and a Quantum Algorithm}}, booktitle = {32nd International Symposium on Algorithms and Computation (ISAAC 2021)}, pages = {31:1--31:27}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-214-3}, ISSN = {1868-8969}, year = {2021}, volume = {212}, editor = {Ahn, Hee-Kap and Sadakane, Kunihiko}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.31}, URN = {urn:nbn:de:0030-drops-154641}, doi = {10.4230/LIPIcs.ISAAC.2021.31}, annote = {Keywords: Simplicial complexes, quantum computing} }
Feedback for Dagstuhl Publishing