Search Results

Documents authored by Boyadzhiyska, Simona


Document
Fixed-Point Cycles and Approximate EFX Allocations

Authors: Benjamin Aram Berendsohn, Simona Boyadzhiyska, and László Kozma

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
We study edge-labelings of the complete bidirected graph K^↔_n with functions that map the set [d] = {1, … , d} to itself. We call a directed cycle in K^↔_n a fixed-point cycle if composing the labels of its edges in order results in a map that has a fixed point, and we say that a labeling is fixed-point-free if no fixed-point cycle exists. For a given d, we ask for the largest value of n, denoted R_f(d), for which there exists a fixed-point-free labeling of K^↔_n. Determining R_f(d) for all d > 0 is a natural Ramsey-type question, generalizing some well-studied zero-sum problems in extremal combinatorics. The problem was recently introduced by Chaudhury, Garg, Mehlhorn, Mehta, and Misra [EC 2021], who proved that d ≤ R_f(d) ≤ d⁴+d and showed that the problem has close connections to EFX allocations, a central problem of fair allocation in social choice theory. In this paper we show the improved bound R_f(d) ≤ d^{2 + o(1)}, yielding an efficient (1-ε)-EFX allocation with n agents and O((n/ε)^{0.67}) unallocated goods; this improves the bound of O((n/ε)^{0.8}) of Chaudhury, Garg, Mehlhorn, Mehta, and Misra. {Additionally, we prove the stronger upper bound 2d-2, in the case where all edge-labels are permutations. A very special case of this problem, that of finding zero-sum cycles in digraphs whose edges are labeled with elements of ℤ_d, was recently considered by Alon and Krivelevich [JGT 2021] and by Mészáros and Steiner [EJC 2021]. Our result improves the bounds obtained by these authors and extends them to labelings with elements of an arbitrary (not necessarily commutative) group, while also simplifying the proof.}

Cite as

Benjamin Aram Berendsohn, Simona Boyadzhiyska, and László Kozma. Fixed-Point Cycles and Approximate EFX Allocations. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 17:1-17:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{berendsohn_et_al:LIPIcs.MFCS.2022.17,
  author =	{Berendsohn, Benjamin Aram and Boyadzhiyska, Simona and Kozma, L\'{a}szl\'{o}},
  title =	{{Fixed-Point Cycles and Approximate EFX Allocations}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{17:1--17:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.17},
  URN =		{urn:nbn:de:0030-drops-168153},
  doi =		{10.4230/LIPIcs.MFCS.2022.17},
  annote =	{Keywords: fixed-point, zero-sum cycle, Ramsey theory, fair allocation, EFX}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail