Published in: LIPIcs, Volume 115, 13th International Symposium on Parameterized and Exact Computation (IPEC 2018)
Júlio Araújo, Victor A. Campos, Carlos Vinícius G. C. Lima, Vinícius Fernandes dos Santos, Ignasi Sau, and Ana Silva. Dual Parameterization of Weighted Coloring. In 13th International Symposium on Parameterized and Exact Computation (IPEC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 115, pp. 12:1-12:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@InProceedings{araujo_et_al:LIPIcs.IPEC.2018.12, author = {Ara\'{u}jo, J\'{u}lio and Campos, Victor A. and Lima, Carlos Vin{\'\i}cius G. C. and Fernandes dos Santos, Vin{\'\i}cius and Sau, Ignasi and Silva, Ana}, title = {{Dual Parameterization of Weighted Coloring}}, booktitle = {13th International Symposium on Parameterized and Exact Computation (IPEC 2018)}, pages = {12:1--12:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-084-2}, ISSN = {1868-8969}, year = {2019}, volume = {115}, editor = {Paul, Christophe and Pilipczuk, Michal}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2018.12}, URN = {urn:nbn:de:0030-drops-102134}, doi = {10.4230/LIPIcs.IPEC.2018.12}, annote = {Keywords: weighted coloring, max coloring, parameterized complexity, dual parameterization, FPT algorithms, polynomial kernels, split graphs, interval graphs} }
Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)
Victor Campos, Jonas Costa, Raul Lopes, and Ignasi Sau. New Menger-Like Dualities in Digraphs and Applications to Half-Integral Linkages. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 30:1-30:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{campos_et_al:LIPIcs.ESA.2023.30, author = {Campos, Victor and Costa, Jonas and Lopes, Raul and Sau, Ignasi}, title = {{New Menger-Like Dualities in Digraphs and Applications to Half-Integral Linkages}}, booktitle = {31st Annual European Symposium on Algorithms (ESA 2023)}, pages = {30:1--30:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-295-2}, ISSN = {1868-8969}, year = {2023}, volume = {274}, editor = {G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.30}, URN = {urn:nbn:de:0030-drops-186838}, doi = {10.4230/LIPIcs.ESA.2023.30}, annote = {Keywords: directed graphs, min-max relation, half-integral linkage, directed disjoint paths, bramble, parameterized complexity, matroids} }
Published in: LIPIcs, Volume 214, 16th International Symposium on Parameterized and Exact Computation (IPEC 2021)
Júlio Araújo, Marin Bougeret, Victor Campos, and Ignasi Sau. A New Framework for Kernelization Lower Bounds: The Case of Maximum Minimal Vertex Cover. In 16th International Symposium on Parameterized and Exact Computation (IPEC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 214, pp. 4:1-4:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
@InProceedings{araujo_et_al:LIPIcs.IPEC.2021.4, author = {Ara\'{u}jo, J\'{u}lio and Bougeret, Marin and Campos, Victor and Sau, Ignasi}, title = {{A New Framework for Kernelization Lower Bounds: The Case of Maximum Minimal Vertex Cover}}, booktitle = {16th International Symposium on Parameterized and Exact Computation (IPEC 2021)}, pages = {4:1--4:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-216-7}, ISSN = {1868-8969}, year = {2021}, volume = {214}, editor = {Golovach, Petr A. and Zehavi, Meirav}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2021.4}, URN = {urn:nbn:de:0030-drops-153879}, doi = {10.4230/LIPIcs.IPEC.2021.4}, annote = {Keywords: Maximum minimal vertex cover, parameterized complexity, polynomial kernel, kernelization lower bound, Erd\H{o}s-Hajnal property, induced subgraphs} }
Feedback for Dagstuhl Publishing