Search Results

Documents authored by Dietrich, Christian


Document
The Platin Multi-Target Worst-Case Analysis Tool

Authors: Emad Jacob Maroun, Eva Dengler, Christian Dietrich, Stefan Hepp, Henriette Herzog, Benedikt Huber, Jens Knoop, Daniel Wiltsche-Prokesch, Peter Puschner, Phillip Raffeck, Martin Schoeberl, Simon Schuster, and Peter Wägemann

Published in: OASIcs, Volume 121, 22nd International Workshop on Worst-Case Execution Time Analysis (WCET 2024)


Abstract
With the increasing number of applications that require reliable runtime guarantees, the relevance of static worst-case analysis tools that can provide such guarantees increases. These analysis tools determine resource-consumption bounds of application tasks, with a model of the underlying hardware, to meet given resource budgets during runtime, such as deadlines of real-time tasks. This paper presents enhancements to the Platin worst-case analysis tool developed since its original release more than ten years ago. These novelties comprise Platin’s support for new architectures (i.e., ARMv6-M, RISC-V, and AVR) in addition to the previous backends for Patmos and ARMv7-M. Further, Platin now features system-wide analysis methods and annotation support to express system-level constraints. Besides an overview of these enhancements, we evaluate Platin’s accuracy for the two supported architecture implementations, Patmos and RISC-V.

Cite as

Emad Jacob Maroun, Eva Dengler, Christian Dietrich, Stefan Hepp, Henriette Herzog, Benedikt Huber, Jens Knoop, Daniel Wiltsche-Prokesch, Peter Puschner, Phillip Raffeck, Martin Schoeberl, Simon Schuster, and Peter Wägemann. The Platin Multi-Target Worst-Case Analysis Tool. In 22nd International Workshop on Worst-Case Execution Time Analysis (WCET 2024). Open Access Series in Informatics (OASIcs), Volume 121, pp. 2:1-2:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{maroun_et_al:OASIcs.WCET.2024.2,
  author =	{Maroun, Emad Jacob and Dengler, Eva and Dietrich, Christian and Hepp, Stefan and Herzog, Henriette and Huber, Benedikt and Knoop, Jens and Wiltsche-Prokesch, Daniel and Puschner, Peter and Raffeck, Phillip and Schoeberl, Martin and Schuster, Simon and W\"{a}gemann, Peter},
  title =	{{The Platin Multi-Target Worst-Case Analysis Tool}},
  booktitle =	{22nd International Workshop on Worst-Case Execution Time Analysis (WCET 2024)},
  pages =	{2:1--2:14},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-346-1},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{121},
  editor =	{Carle, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2024.2},
  URN =		{urn:nbn:de:0030-drops-204704},
  doi =		{10.4230/OASIcs.WCET.2024.2},
  annote =	{Keywords: worst-case resource consumption, WCET, static analysis tool}
}
Document
Whole-System Worst-Case Energy-Consumption Analysis for Energy-Constrained Real-Time Systems

Authors: Peter Wägemann, Christian Dietrich, Tobias Distler, Peter Ulbrich, and Wolfgang Schröder-Preikschat

Published in: LIPIcs, Volume 106, 30th Euromicro Conference on Real-Time Systems (ECRTS 2018)


Abstract
Although internal devices (e.g., memory, timers) and external devices (e.g., transceivers, sensors) significantly contribute to the energy consumption of an embedded real-time system, their impact on the worst-case response energy consumption (WCRE) of tasks is usually not adequately taken into account. Most WCRE analysis techniques, for example, only focus on the processor and therefore do not consider the energy consumption of other hardware units. Apart from that, the typical approach for dealing with devices is to assume that all of them are always activated, which leads to high WCRE overestimations in the general case where a system switches off the devices that are currently not needed in order to minimize energy consumption. In this paper, we present SysWCEC, an approach that addresses these problems by enabling static WCRE analysis for entire real-time systems, including internal as well as external devices. For this purpose, SysWCEC introduces a novel abstraction, the power-state-transition graph, which contains information about the worst-case energy consumption of all possible execution paths. To construct the graph, SysWCEC decomposes the analyzed real-time system into blocks during which the set of active devices in the system does not change and is consequently able to precisely handle devices being dynamically activated or deactivated.

Cite as

Peter Wägemann, Christian Dietrich, Tobias Distler, Peter Ulbrich, and Wolfgang Schröder-Preikschat. Whole-System Worst-Case Energy-Consumption Analysis for Energy-Constrained Real-Time Systems. In 30th Euromicro Conference on Real-Time Systems (ECRTS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 106, pp. 24:1-24:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{wagemann_et_al:LIPIcs.ECRTS.2018.24,
  author =	{W\"{a}gemann, Peter and Dietrich, Christian and Distler, Tobias and Ulbrich, Peter and Schr\"{o}der-Preikschat, Wolfgang},
  title =	{{Whole-System Worst-Case Energy-Consumption Analysis for Energy-Constrained Real-Time Systems}},
  booktitle =	{30th Euromicro Conference on Real-Time Systems (ECRTS 2018)},
  pages =	{24:1--24:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-075-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{106},
  editor =	{Altmeyer, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2018.24},
  URN =		{urn:nbn:de:0030-drops-89795},
  doi =		{10.4230/LIPIcs.ECRTS.2018.24},
  annote =	{Keywords: energy-constrained real-time systems, worst-case energy consumption (WCEC), worst-case response energy consumption (WCRE), static whole-system analysis}
}
Document
Whole-System WCEC Analysis for Energy-Constrained Real-Time Systems (Artifact)

Authors: Peter Wägemann, Christian Dietrich, Tobias Distler, Peter Ulbrich, and Wolfgang Schröder-Preikschat

Published in: DARTS, Volume 4, Issue 2, Special Issue of the 30th Euromicro Conference on Real-Time Systems (ECRTS 2018)


Abstract
Although internal devices (e.g., memory, timers) and external devices (e.g., sensors, transceivers) significantly contribute to the energy consumption of an embedded real-time system, their impact on the worst-case response energy consumption (WCRE) of tasks is usually not adequately taken into account. Most WCRE analysis techniques only focus on the processor and neglect the energy consumption of other hardware units that are temporarily activated and deactivated in the system. To solve the problem of system-wide energy-consumption analysis, we present SysWCEC, an approach that addresses these problems by enabling static WCRE analysis for entire real-time systems, including internal as well as external devices. For this purpose, SysWCEC introduces a novel abstraction, the power-state--transition graph, which contains information about the worst-case energy consumption of all possible execution paths. To construct the graph, SysWCEC decomposes the analyzed real-time system into blocks during which the set of active devices in the system does not change and is consequently able to precisely handle devices being dynamically activated or deactivated. In this artifact evaluation, which accompanies our related conference paper, we present easy to reproduce WCRE analyses with the SysWCEC framework using several benchmarks. The artifact comprises the generation of the power-state--transition graph from a given benchmark system and the formulation of an integer linear program whose solution eventually yields safe WCRE bounds.

Cite as

Peter Wägemann, Christian Dietrich, Tobias Distler, Peter Ulbrich, and Wolfgang Schröder-Preikschat. Whole-System WCEC Analysis for Energy-Constrained Real-Time Systems (Artifact). In Special Issue of the 30th Euromicro Conference on Real-Time Systems (ECRTS 2018). Dagstuhl Artifacts Series (DARTS), Volume 4, Issue 2, pp. 7:1-7:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@Article{wagemann_et_al:DARTS.4.2.7,
  author =	{W\"{a}gemann, Peter and Dietrich, Christian and Distler, Tobias and Ulbrich, Peter and Schr\"{o}der-Preikschat, Wolfgang},
  title =	{{Whole-System WCEC Analysis for Energy-Constrained Real-Time Systems (Artifact)}},
  pages =	{7:1--7:4},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2018},
  volume =	{4},
  number =	{2},
  editor =	{W\"{a}gemann, Peter and Dietrich, Christian and Distler, Tobias and Ulbrich, Peter and Schr\"{o}der-Preikschat, Wolfgang},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.4.2.7},
  URN =		{urn:nbn:de:0030-drops-89756},
  doi =		{10.4230/DARTS.4.2.7},
  annote =	{Keywords: energy-constrained real-time systems, worst-case energy consumption (WCEC), worst-case response energy consumption (WCRE), static whole-system analysi}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail