Search Results

Documents authored by Diomidova, Jenny


Document
Reconfiguration Algorithms for Cubic Modular Robots with Realistic Movement Constraints

Authors: MIT-NASA Space Robots Team, Josh Brunner, Kenneth C. Cheung, Erik D. Demaine, Jenny Diomidova, Christine Gregg, Della H. Hendrickson, and Irina Kostitsyna

Published in: LIPIcs, Volume 294, 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024)


Abstract
We introduce and analyze a model for self-reconfigurable robots made up of unit-cube modules. Compared to past models, our model aims to newly capture two important practical aspects of real-world robots. First, modules often do not occupy an exact unit cube, but rather have features like bumps extending outside the allotted space so that modules can interlock. Thus, for example, our model forbids modules from squeezing in between two other modules that are one unit distance apart. Second, our model captures the practical scenario of many passive modules assembled by a single robot, instead of requiring all modules to be able to move on their own. We prove two universality results. First, with a supply of auxiliary modules, we show that any connected polycube structure can be constructed by a carefully aligned plane sweep. Second, without additional modules, we show how to construct any structure for which a natural notion of external feature size is at least a constant; this property largely consolidates forbidden-pattern properties used in previous works on reconfigurable modular robots.

Cite as

MIT-NASA Space Robots Team, Josh Brunner, Kenneth C. Cheung, Erik D. Demaine, Jenny Diomidova, Christine Gregg, Della H. Hendrickson, and Irina Kostitsyna. Reconfiguration Algorithms for Cubic Modular Robots with Realistic Movement Constraints. In 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 294, pp. 34:1-34:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{mitnasaspacerobotsteam_et_al:LIPIcs.SWAT.2024.34,
  author =	{MIT-NASA Space Robots Team and Brunner, Josh and Cheung, Kenneth C. and Demaine, Erik D. and Diomidova, Jenny and Gregg, Christine and Hendrickson, Della H. and Kostitsyna, Irina},
  title =	{{Reconfiguration Algorithms for Cubic Modular Robots with Realistic Movement Constraints}},
  booktitle =	{19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024)},
  pages =	{34:1--34:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-318-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{294},
  editor =	{Bodlaender, Hans L.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2024.34},
  URN =		{urn:nbn:de:0030-drops-200742},
  doi =		{10.4230/LIPIcs.SWAT.2024.34},
  annote =	{Keywords: Modular robotics, programmable matter, digital materials, motion planning}
}
Document
Complexity of Reconfiguration in Surface Chemical Reaction Networks

Authors: Robert M. Alaniz, Josh Brunner, Michael Coulombe, Erik D. Demaine, Jenny Diomidova, Timothy Gomez, Elise Grizzell, Ryan Knobel, Jayson Lynch, Andrew Rodriguez, Robert Schweller, and Tim Wylie

Published in: LIPIcs, Volume 276, 29th International Conference on DNA Computing and Molecular Programming (DNA 29) (2023)


Abstract
We analyze the computational complexity of basic reconfiguration problems for the recently introduced surface Chemical Reaction Networks (sCRNs), where ordered pairs of adjacent species nondeterministically transform into a different ordered pair of species according to a predefined set of allowed transition rules (chemical reactions). In particular, two questions that are fundamental to the simulation of sCRNs are whether a given configuration of molecules can ever transform into another given configuration, and whether a given cell can ever contain a given species, given a set of transition rules. We show that these problems can be solved in polynomial time, are NP-complete, or are PSPACE-complete in a variety of different settings, including when adjacent species just swap instead of arbitrary transformation (swap sCRNs), and when cells can change species a limited number of times (k-burnout). Most problems turn out to be at least NP-hard except with very few distinct species (2 or 3).

Cite as

Robert M. Alaniz, Josh Brunner, Michael Coulombe, Erik D. Demaine, Jenny Diomidova, Timothy Gomez, Elise Grizzell, Ryan Knobel, Jayson Lynch, Andrew Rodriguez, Robert Schweller, and Tim Wylie. Complexity of Reconfiguration in Surface Chemical Reaction Networks. In 29th International Conference on DNA Computing and Molecular Programming (DNA 29). Leibniz International Proceedings in Informatics (LIPIcs), Volume 276, pp. 10:1-10:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{alaniz_et_al:LIPIcs.DNA.29.10,
  author =	{Alaniz, Robert M. and Brunner, Josh and Coulombe, Michael and Demaine, Erik D. and Diomidova, Jenny and Gomez, Timothy and Grizzell, Elise and Knobel, Ryan and Lynch, Jayson and Rodriguez, Andrew and Schweller, Robert and Wylie, Tim},
  title =	{{Complexity of Reconfiguration in Surface Chemical Reaction Networks}},
  booktitle =	{29th International Conference on DNA Computing and Molecular Programming (DNA 29)},
  pages =	{10:1--10:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-297-6},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{276},
  editor =	{Chen, Ho-Lin and Evans, Constantine G.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DNA.29.10},
  URN =		{urn:nbn:de:0030-drops-187936},
  doi =		{10.4230/LIPIcs.DNA.29.10},
  annote =	{Keywords: Chemical Reaction Networks, reconfiguration, hardness}
}