Search Results

Documents authored by Giannini, Paola


Document
Invited Talk
Unsolvable Terms in Filter Models (Invited Talk)

Authors: Mariangiola Dezani-Ciancaglini, Paola Giannini, and Furio Honsell

Published in: LIPIcs, Volume 337, 10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025)


Abstract
Intersection type theories (itt’s) and filter models, i.e. λ-calculus models generated by itt’s, are reviewed in full generality. In this framework, which subsumes most λ-calculus models in the literature based on Scott-continuous functions, we discuss the interpretation of unsolvable terms. We give a necessary, but not sufficient, condition on an itt for the interpretation of some unsolvable term to be non-trivial in the filter model it generates. This result is obtained building on a type theoretic characterisation of the fine structure of unsolvables.

Cite as

Mariangiola Dezani-Ciancaglini, Paola Giannini, and Furio Honsell. Unsolvable Terms in Filter Models (Invited Talk). In 10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 337, pp. 3:1-3:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dezaniciancaglini_et_al:LIPIcs.FSCD.2025.3,
  author =	{Dezani-Ciancaglini, Mariangiola and Giannini, Paola and Honsell, Furio},
  title =	{{Unsolvable Terms in Filter Models}},
  booktitle =	{10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025)},
  pages =	{3:1--3:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-374-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{337},
  editor =	{Fern\'{a}ndez, Maribel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2025.3},
  URN =		{urn:nbn:de:0030-drops-236181},
  doi =		{10.4230/LIPIcs.FSCD.2025.3},
  annote =	{Keywords: \lambda-calculus, Intersection Types, Unsolvable Terms, Filter Models}
}
Document
Monadic Type-And-Effect Soundness

Authors: Francesco Dagnino, Paola Giannini, and Elena Zucca

Published in: LIPIcs, Volume 333, 39th European Conference on Object-Oriented Programming (ECOOP 2025)


Abstract
We introduce the abstract notions of monadic operational semantics, a small-step semantics where computational effects are modularly modeled by a monad, and type-and-effect system, including effect types whose interpretation lifts well-typedness to its monadic version. In this meta-theory, as usual in the non-monadic case, we can express progress and subject reduction, and provide a proof, given once and for all, that they imply soundness. The approach is illustrated on a lambda calculus with generic effects, equipped with an expressive type-and-effect system We provide proofs of progress and subject reduction, parametric on the interpretation of effect types. In this way, we obtain as instances many significant examples, such as checking exceptions, preventing/limiting non-determinism, constraining order/fairness of outputs. We also provide an extension with constructs to raise and handle computational effects, which can be instantiated to model different policies.

Cite as

Francesco Dagnino, Paola Giannini, and Elena Zucca. Monadic Type-And-Effect Soundness. In 39th European Conference on Object-Oriented Programming (ECOOP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 333, pp. 7:1-7:31, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dagnino_et_al:LIPIcs.ECOOP.2025.7,
  author =	{Dagnino, Francesco and Giannini, Paola and Zucca, Elena},
  title =	{{Monadic Type-And-Effect Soundness}},
  booktitle =	{39th European Conference on Object-Oriented Programming (ECOOP 2025)},
  pages =	{7:1--7:31},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-373-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{333},
  editor =	{Aldrich, Jonathan and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2025.7},
  URN =		{urn:nbn:de:0030-drops-233009},
  doi =		{10.4230/LIPIcs.ECOOP.2025.7},
  annote =	{Keywords: Effects, monads, type soundness}
}
Document
An Effectful Object Calculus

Authors: Francesco Dagnino, Paola Giannini, and Elena Zucca

Published in: LIPIcs, Volume 333, 39th European Conference on Object-Oriented Programming (ECOOP 2025)


Abstract
We show how to smoothly incorporate in the object-oriented paradigm constructs to raise, compose, and handle effects in an arbitrary monad. The underlying pure calculus is meant to be a representative of the last generation of OO languages, and the effectful extension is manageable enough for ordinary programmers; notably, constructs to raise effects are just special methods. We equip the calculus with an expressive type-and-effect system, which, again by relying on standard features such as inheritance and generic types, allows a simple form of effect polymorphism. The soundness of the type-and-effect system is expressed and proved by a recently introduced technique, where the semantics is formalized by a one-step reduction relation from language expressions into monadic ones, so that it is enough to prove progress and subject reduction properties on this relation.

Cite as

Francesco Dagnino, Paola Giannini, and Elena Zucca. An Effectful Object Calculus. In 39th European Conference on Object-Oriented Programming (ECOOP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 333, pp. 8:1-8:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dagnino_et_al:LIPIcs.ECOOP.2025.8,
  author =	{Dagnino, Francesco and Giannini, Paola and Zucca, Elena},
  title =	{{An Effectful Object Calculus}},
  booktitle =	{39th European Conference on Object-Oriented Programming (ECOOP 2025)},
  pages =	{8:1--8:30},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-373-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{333},
  editor =	{Aldrich, Jonathan and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2025.8},
  URN =		{urn:nbn:de:0030-drops-233017},
  doi =		{10.4230/LIPIcs.ECOOP.2025.8},
  annote =	{Keywords: Object calculi, handlers, type-and-effect systems}
}
Document
Multi-Graded Featherweight Java

Authors: Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca

Published in: LIPIcs, Volume 263, 37th European Conference on Object-Oriented Programming (ECOOP 2023)


Abstract
Resource-aware type systems statically approximate not only the expected result type of a program, but also the way external resources are used, e.g., how many times the value of a variable is needed. We extend the type system of Featherweight Java to be resource-aware, parametrically on an arbitrary grade algebra modeling a specific usage of resources. We prove that this type system is sound with respect to a resource-aware version of reduction, that is, a well-typed program has a reduction sequence which does not get stuck due to resource consumption. Moreover, we show that the available grades can be heterogeneous, that is, obtained by combining grades of different kinds, via a minimal collection of homomorphisms from one kind to another. Finally, we show how grade algebras and homomorphisms can be specified as Java classes, so that grade annotations in types can be written in the language itself.

Cite as

Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca. Multi-Graded Featherweight Java. In 37th European Conference on Object-Oriented Programming (ECOOP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 263, pp. 3:1-3:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bianchini_et_al:LIPIcs.ECOOP.2023.3,
  author =	{Bianchini, Riccardo and Dagnino, Francesco and Giannini, Paola and Zucca, Elena},
  title =	{{Multi-Graded Featherweight Java}},
  booktitle =	{37th European Conference on Object-Oriented Programming (ECOOP 2023)},
  pages =	{3:1--3:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-281-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{263},
  editor =	{Ali, Karim and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2023.3},
  URN =		{urn:nbn:de:0030-drops-181960},
  doi =		{10.4230/LIPIcs.ECOOP.2023.3},
  annote =	{Keywords: Graded modal types, Java}
}
Document
Deconfined Intersection Types in Java

Authors: Mariangiola Dezani-Ciancaglini, Paola Giannini, and Betti Venneri

Published in: OASIcs, Volume 86, Recent Developments in the Design and Implementation of Programming Languages (2020)


Abstract
We show how Java intersection types can be freed from their confinement in type casts, in such a way that the proposed Java extension is safe and fully compatible with the current language. To this aim, we exploit two calculi which formalise the simple Java core and the extended language, respectively. Namely, the second calculus extends the first one by allowing an intersection type to be used anywhere in place of a nominal type. We define a translation algorithm, compiling programs of the extended language into programs of the former calculus. The key point is the interaction between λ-expressions and intersection types, that adds safe expressiveness while being the crucial matter in the translation. We prove that the translation preserves typing and semantics. Thus, typed programs in the proposed extension are translated to typed Java programs. Moreover, semantics of translated programs coincides with the one of the source programs.

Cite as

Mariangiola Dezani-Ciancaglini, Paola Giannini, and Betti Venneri. Deconfined Intersection Types in Java. In Recent Developments in the Design and Implementation of Programming Languages. Open Access Series in Informatics (OASIcs), Volume 86, pp. 3:1-3:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{dezaniciancaglini_et_al:OASIcs.Gabbrielli.3,
  author =	{Dezani-Ciancaglini, Mariangiola and Giannini, Paola and Venneri, Betti},
  title =	{{Deconfined Intersection Types in Java}},
  booktitle =	{Recent Developments in the Design and Implementation of Programming Languages},
  pages =	{3:1--3:25},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-171-9},
  ISSN =	{2190-6807},
  year =	{2020},
  volume =	{86},
  editor =	{de Boer, Frank S. and Mauro, Jacopo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Gabbrielli.3},
  URN =		{urn:nbn:de:0030-drops-132256},
  doi =		{10.4230/OASIcs.Gabbrielli.3},
  annote =	{Keywords: Intersection Types, Featherweight Java, Lambda Expressions}
}
Document
Constrained Polymorphic Types for a Calculus with Name Variables

Authors: Davide Ancona, Paola Giannini, and Elena Zucca

Published in: LIPIcs, Volume 69, 21st International Conference on Types for Proofs and Programs (TYPES 2015) (2018)


Abstract
We extend the simply-typed lambda-calculus with a mechanism for dynamic rebinding of code based on parametric nominal interfaces. That is, we introduce values which represent single fragments, or families of named fragments, of open code, where free variables are associated with names which do not obey \alpha-equivalence. In this way, code fragments can be passed as function arguments and manipulated, through their nominal interface, by operators such as rebinding, overriding and renaming. Moreover, by using name variables, it is possible to write terms which are parametric in their nominal interface and/or in the way it is adapted, greatly enhancing expressivity. However, in order to prevent conflicts when instantiating name variables, the name-polymorphic types of such terms need to be equipped with simple {inequality} constraints. We show soundness of the type system.

Cite as

Davide Ancona, Paola Giannini, and Elena Zucca. Constrained Polymorphic Types for a Calculus with Name Variables. In 21st International Conference on Types for Proofs and Programs (TYPES 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 69, pp. 4:1-4:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{ancona_et_al:LIPIcs.TYPES.2015.4,
  author =	{Ancona, Davide and Giannini, Paola and Zucca, Elena},
  title =	{{Constrained Polymorphic Types for a Calculus with Name Variables}},
  booktitle =	{21st International Conference on Types for Proofs and Programs (TYPES 2015)},
  pages =	{4:1--4:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-030-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{69},
  editor =	{Uustalu, Tarmo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2015.4},
  URN =		{urn:nbn:de:0030-drops-84744},
  doi =		{10.4230/LIPIcs.TYPES.2015.4},
  annote =	{Keywords: open code, incremental rebinding, name polymorphism, metaprogramming}
}
Document
Concurrent Reversible Sessions

Authors: Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Paola Giannini

Published in: LIPIcs, Volume 85, 28th International Conference on Concurrency Theory (CONCUR 2017)


Abstract
We present a calculus for concurrent reversible multiparty sessions, which improves on recent proposals in several respects: it allows for concurrent and sequential composition within processes and types, it gives a compact representation of the past of processes and types, which facilitates the definition of rollback, and it implements a fine-tuned strategy for backward computation. We propose a refined session type system for our calculus and show that it enforces the expected properties of session fidelity, forward and backward progress, as well as causal consistency. In conclusion, our calculus is a conservative extension of previous proposals, offering enhanced expressive power and refined analysis techniques.

Cite as

Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Paola Giannini. Concurrent Reversible Sessions. In 28th International Conference on Concurrency Theory (CONCUR 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 85, pp. 30:1-30:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{castellani_et_al:LIPIcs.CONCUR.2017.30,
  author =	{Castellani, Ilaria and Dezani-Ciancaglini, Mariangiola and Giannini, Paola},
  title =	{{Concurrent Reversible Sessions}},
  booktitle =	{28th International Conference on Concurrency Theory (CONCUR 2017)},
  pages =	{30:1--30:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-048-4},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{85},
  editor =	{Meyer, Roland and Nestmann, Uwe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2017.30},
  URN =		{urn:nbn:de:0030-drops-77877},
  doi =		{10.4230/LIPIcs.CONCUR.2017.30},
  annote =	{Keywords: Communication-centric Systems, Reversible Computation, Process Calculi, Multiparty Session Types}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail