Document

**Published in:** LIPIcs, Volume 254, 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)

We continue developing the theory around the twin-width of totally ordered binary structures (or equivalently, matrices over a finite alphabet), initiated in the previous paper of the series. We first introduce the notion of parity and linear minors of a matrix, which consists of iteratively replacing consecutive rows or consecutive columns with a linear combination of them. We show that a matrix class (i.e., a set of matrices closed under taking submatrices) has bounded twin-width if and only if its linear-minor closure does not contain all matrices. We observe that the fixed-parameter tractable (FPT) algorithm for first-order model checking on structures given with an O(1)-sequence (certificate of bounded twin-width) and the fact that first-order transductions of bounded twin-width classes have bounded twin-width, both established in Twin-width I, extend to first-order logic with modular counting quantifiers. We make explicit a win-win argument obtained as a by-product of Twin-width IV, and somewhat similar to bidimensionality, that we call rank-bidimensionality. This generalizes the seminal work of Guillemot and Marx [SODA '14], which builds on the Marcus-Tardos theorem [JCTA '04]. It works on general matrices (not only on classes of bounded twin-width) and, for example, yields FPT algorithms deciding if a small matrix is a parity or a linear minor of another matrix given in input, or exactly computing the grid or mixed number of a given matrix (i.e., the maximum integer k such that the row set and the column set of the matrix can be partitioned into k intervals, with each of the k² defined cells containing a non-zero entry, or two distinct rows and two distinct columns, respectively).
Armed with the above-mentioned extension to modular counting, we show that the twin-width of the product of two conformal matrices A, B (i.e., whose dimensions are such that AB is defined) over a finite field is bounded by a function of the twin-width of A, of B, and of the size of the field. Furthermore, if A and B are n × n matrices of twin-width d over F_q, we show that AB can be computed in time O_{d,q}(n² log n).
We finally present an ad hoc algorithm to efficiently multiply two matrices of bounded twin-width, with a single-exponential dependence in the twin-width bound. More precisely, pipelined to observations and results of Pilipczuk et al. [STACS '22], we obtain the following. If the inputs are given in a compact tree-like form (witnessing twin-width at most d), called twin-decomposition of width d, then two n × n matrices A, B over F₂ can be multiplied in time 4^{d+o(d)}n, in the sense that a twin-decomposition of their product AB, with width 2^{d+o(d)}, is output within that time, and each entry of AB can be queried in time O_d(log log n). Furthermore, for every ε > 0, the query time can be brought to constant time O(1/ε) if the running time is increased to near-linear 4^{d+o(d)}n^{1+ε}. Notably, the running time is sublinear (essentially square root) in the number of (non-zero) entries.

Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, and Stéphan Thomassé. Twin-Width V: Linear Minors, Modular Counting, and Matrix Multiplication. In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 15:1-15:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.STACS.2023.15, author = {Bonnet, \'{E}douard and Giocanti, Ugo and Ossona de Mendez, Patrice and Thomass\'{e}, St\'{e}phan}, title = {{Twin-Width V: Linear Minors, Modular Counting, and Matrix Multiplication}}, booktitle = {40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)}, pages = {15:1--15:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-266-2}, ISSN = {1868-8969}, year = {2023}, volume = {254}, editor = {Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2023.15}, URN = {urn:nbn:de:0030-drops-176675}, doi = {10.4230/LIPIcs.STACS.2023.15}, annote = {Keywords: Twin-width, matrices, parity and linear minors, model theory, linear algebra, matrix multiplication, algorithms, computational complexity} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail