Search Results

Documents authored by Grüttemeier, Niels


Document
A Graph-Theoretic Formulation of Exploratory Blockmodeling

Authors: Alexander Bille, Niels Grüttemeier, Christian Komusiewicz, and Nils Morawietz

Published in: LIPIcs, Volume 265, 21st International Symposium on Experimental Algorithms (SEA 2023)


Abstract
We present a new simple graph-theoretic formulation of the exploratory blockmodeling problem on undirected and unweighted one-mode networks. Our formulation takes as input the network G and the maximum number t of blocks for the solution model. The task is to find a minimum-size set of edge insertions and deletions that transform the input graph G into a graph G' with at most t neighborhood classes. Herein, a neighborhood class is a maximal set of vertices with the same neighborhood. The neighborhood classes of G' directly give the blocks and block interactions of the computed blockmodel. We analyze the classic and parameterized complexity of the exploratory blockmodeling problem, provide a branch-and-bound algorithm, an ILP formulation and several heuristics. Finally, we compare our exact algorithms to previous ILP-based approaches and show that the new algorithms are faster for t ≥ 4.

Cite as

Alexander Bille, Niels Grüttemeier, Christian Komusiewicz, and Nils Morawietz. A Graph-Theoretic Formulation of Exploratory Blockmodeling. In 21st International Symposium on Experimental Algorithms (SEA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 265, pp. 14:1-14:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bille_et_al:LIPIcs.SEA.2023.14,
  author =	{Bille, Alexander and Gr\"{u}ttemeier, Niels and Komusiewicz, Christian and Morawietz, Nils},
  title =	{{A Graph-Theoretic Formulation of Exploratory Blockmodeling}},
  booktitle =	{21st International Symposium on Experimental Algorithms (SEA 2023)},
  pages =	{14:1--14:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-279-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{265},
  editor =	{Georgiadis, Loukas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2023.14},
  URN =		{urn:nbn:de:0030-drops-183648},
  doi =		{10.4230/LIPIcs.SEA.2023.14},
  annote =	{Keywords: Clustering, Exact Algorithms, ILP-Formulation, Branch-and-Bound, Social Networks}
}
Document
Colored Cut Games

Authors: Nils Morawietz, Niels Grüttemeier, Christian Komusiewicz, and Frank Sommer

Published in: LIPIcs, Volume 182, 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)


Abstract
In a graph G = (V,E) with an edge coloring 𝓁:E → C and two distinguished vertices s and t, a colored (s,t)-cut is a set C̃ ⊆ C such that deleting all edges with some color c ∈ C̃ from G disconnects s and t. Motivated by applications in the design of robust networks, we introduce a family of problems called colored cut games. In these games, an attacker and a defender choose colors to delete and to protect, respectively, in an alternating fashion. It is the goal of the attacker to achieve a colored (s,t)-cut and the goal of the defender to prevent this. First, we show that for an unbounded number of alternations, colored cut games are PSPACE-complete. We then show that, even on subcubic graphs, colored cut games with a constant number i of alternations are complete for classes in the polynomial hierarchy whose level depends on i. To complete the dichotomy, we show that all colored cut games are polynomial-time solvable on graphs with degree at most two. Finally, we show that all colored cut games admit a polynomial kernel for the parameter k+κ_r where k denotes the total attacker budget and, for any constant r, κ_r is the number of vertex deletions that are necessary to transform G into a graph where the longest path has length at most r. In the case of r = 1, κ₁ is the vertex cover number vc of the input graph and we obtain a kernel with 𝒪(vc²k²) edges. Moreover, we introduce an algorithm solving the most basic colored cut game, Colored (s,t)-Cut, in 2^{vc + k}n^{𝒪(1)} time.

Cite as

Nils Morawietz, Niels Grüttemeier, Christian Komusiewicz, and Frank Sommer. Colored Cut Games. In 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 182, pp. 30:1-30:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{morawietz_et_al:LIPIcs.FSTTCS.2020.30,
  author =	{Morawietz, Nils and Gr\"{u}ttemeier, Niels and Komusiewicz, Christian and Sommer, Frank},
  title =	{{Colored Cut Games}},
  booktitle =	{40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)},
  pages =	{30:1--30:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-174-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{182},
  editor =	{Saxena, Nitin and Simon, Sunil},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2020.30},
  URN =		{urn:nbn:de:0030-drops-132719},
  doi =		{10.4230/LIPIcs.FSTTCS.2020.30},
  annote =	{Keywords: Labeled Cut, Labeled Path, Network Robustness, Kernelization, PSPACE, Polynomial Hierarchy}
}
Document
Maximum Edge-Colorable Subgraph and Strong Triadic Closure Parameterized by Distance to Low-Degree Graphs

Authors: Niels Grüttemeier, Christian Komusiewicz, and Nils Morawietz

Published in: LIPIcs, Volume 162, 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)


Abstract
Given an undirected graph G and integers c and k, the Maximum Edge-Colorable Subgraph problem asks whether we can delete at most k edges in G to obtain a graph that has a proper edge coloring with at most c colors. We show that Maximum Edge-Colorable Subgraph admits, for every fixed c, a linear-size problem kernel when parameterized by the edge deletion distance of G to a graph with maximum degree c-1. This parameterization measures the distance to instances that, due to Vizing’s famous theorem, are trivial yes-instances. For c≤ 4, we also provide a linear-size kernel for the same parameterization for Multi Strong Triadic Closure, a related edge coloring problem with applications in social network analysis. We provide further results for Maximum Edge-Colorable Subgraph parameterized by the vertex deletion distance to graphs where every component has order at most c and for the list-colored versions of both problems.

Cite as

Niels Grüttemeier, Christian Komusiewicz, and Nils Morawietz. Maximum Edge-Colorable Subgraph and Strong Triadic Closure Parameterized by Distance to Low-Degree Graphs. In 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 162, pp. 26:1-26:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{gruttemeier_et_al:LIPIcs.SWAT.2020.26,
  author =	{Gr\"{u}ttemeier, Niels and Komusiewicz, Christian and Morawietz, Nils},
  title =	{{Maximum Edge-Colorable Subgraph and Strong Triadic Closure Parameterized by Distance to Low-Degree Graphs}},
  booktitle =	{17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)},
  pages =	{26:1--26:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-150-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{162},
  editor =	{Albers, Susanne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2020.26},
  URN =		{urn:nbn:de:0030-drops-122731},
  doi =		{10.4230/LIPIcs.SWAT.2020.26},
  annote =	{Keywords: Graph coloring, social networks, parameterized complexity, kernelization}
}
Document
String Factorizations Under Various Collision Constraints

Authors: Niels Grüttemeier, Christian Komusiewicz, Nils Morawietz, and Frank Sommer

Published in: LIPIcs, Volume 161, 31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020)


Abstract
In the NP-hard Equality-Free String Factorization problem, we are given a string S and ask whether S can be partitioned into k factors that are pairwise distinct. We describe a randomized algorithm for Equality-Free String Factorization with running time 2^k⋅ k^{𝒪(1)}+𝒪(n) improving over previous algorithms with running time k^{𝒪(k)}+𝒪(n) [Schmid, TCS 2016; Mincu and Popa, Proc. SOFSEM 2020]. Our algorithm works for the generalization of Equality-Free String Factorization where equality can be replaced by an arbitrary polynomial-time computable equivalence relation on strings. We also consider two factorization problems to which this algorithm does not apply, namely Prefix-Free String Factorization where we ask for a factorization of size k such that no factor is a prefix of another factor and Substring-Free String Factorization where we ask for a factorization of size k such that no factor is a substring of another factor. We show that these two problems are NP-hard as well. Then, we show that Prefix-Free String Factorization with the prefix-free relation is fixed-parameter tractable with respect to k by providing a polynomial problem kernel. Finally, we show a generic ILP formulation for R-Free String Factorization where R is an arbitrary relation on strings. This formulation improves over a previous one for Equality-Free String Factorization in terms of the number of variables.

Cite as

Niels Grüttemeier, Christian Komusiewicz, Nils Morawietz, and Frank Sommer. String Factorizations Under Various Collision Constraints. In 31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 161, pp. 17:1-17:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{gruttemeier_et_al:LIPIcs.CPM.2020.17,
  author =	{Gr\"{u}ttemeier, Niels and Komusiewicz, Christian and Morawietz, Nils and Sommer, Frank},
  title =	{{String Factorizations Under Various Collision Constraints}},
  booktitle =	{31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020)},
  pages =	{17:1--17:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-149-8},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{161},
  editor =	{G{\o}rtz, Inge Li and Weimann, Oren},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2020.17},
  URN =		{urn:nbn:de:0030-drops-121428},
  doi =		{10.4230/LIPIcs.CPM.2020.17},
  annote =	{Keywords: NP-hard problem, fixed-parameter algorithms, collision-aware string partitioning}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail