Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)

We continue the study of distance sensitivity oracles (DSOs). Given a directed graph G with n vertices and edge weights in {1, 2, … , M}, we want to build a data structure such that given any source vertex u, any target vertex v, and any failure f (which is either a vertex or an edge), it outputs the length of the shortest path from u to v not going through f. Our main result is a DSO with preprocessing time O(n^2.5794 M) and constant query time. Previously, the best preprocessing time of DSOs for directed graphs is O(n^2.7233 M), and even in the easier case of undirected graphs, the best preprocessing time is O(n^2.6865 M) [Ren, ESA 2020]. One drawback of our DSOs, though, is that it only supports distance queries but not path queries.
Our main technical ingredient is an algorithm that computes the inverse of a degree-d polynomial matrix (i.e. a matrix whose entries are degree-d univariate polynomials) modulo x^r. The algorithm is adapted from [Zhou, Labahn and Storjohann, Journal of Complexity, 2015], and we replace some of its intermediate steps with faster rectangular matrix multiplication algorithms.
We also show how to compute unique shortest paths in a directed graph with edge weights in {1, 2, … , M}, in O(n^2.5286 M) time. This algorithm is crucial in the preprocessing algorithm of our DSO. Our solution improves the O(n^2.6865 M) time bound in [Ren, ESA 2020], and matches the current best time bound for computing all-pairs shortest paths.

Yong Gu and Hanlin Ren. Constructing a Distance Sensitivity Oracle in O(n^2.5794 M) Time. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 76:1-76:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{gu_et_al:LIPIcs.ICALP.2021.76, author = {Gu, Yong and Ren, Hanlin}, title = {{Constructing a Distance Sensitivity Oracle in O(n^2.5794 M) Time}}, booktitle = {48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)}, pages = {76:1--76:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-195-5}, ISSN = {1868-8969}, year = {2021}, volume = {198}, editor = {Bansal, Nikhil and Merelli, Emanuela and Worrell, James}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.76}, URN = {urn:nbn:de:0030-drops-141450}, doi = {10.4230/LIPIcs.ICALP.2021.76}, annote = {Keywords: graph theory, shortest paths, distance sensitivity oracles} }

Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)

A roundtrip spanner of a directed graph G is a subgraph of G preserving roundtrip distances approximately for all pairs of vertices. Despite extensive research, there is still a small stretch gap between roundtrip spanners in directed graphs and undirected graphs. For a directed graph with real edge weights in [1,W], we first propose a new deterministic algorithm that constructs a roundtrip spanner with (2k-1) stretch and O(k n^(1+1/k) log (nW)) edges for every integer k > 1, then remove the dependence of size on W to give a roundtrip spanner with (2k-1) stretch and O(k n^(1+1/k) log n) edges. While keeping the edge size small, our result improves the previous 2k+ε stretch roundtrip spanners in directed graphs [Roditty, Thorup, Zwick'02; Zhu, Lam'18], and almost matches the undirected (2k-1)-spanner with O(n^(1+1/k)) edges [Althöfer et al. '93] when k is a constant, which is optimal under Erdös conjecture.

Ruoxu Cen, Ran Duan, and Yong Gu. Roundtrip Spanners with (2k-1) Stretch. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 24:1-24:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{cen_et_al:LIPIcs.ICALP.2020.24, author = {Cen, Ruoxu and Duan, Ran and Gu, Yong}, title = {{Roundtrip Spanners with (2k-1) Stretch}}, booktitle = {47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)}, pages = {24:1--24:11}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-138-2}, ISSN = {1868-8969}, year = {2020}, volume = {168}, editor = {Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.24}, URN = {urn:nbn:de:0030-drops-124313}, doi = {10.4230/LIPIcs.ICALP.2020.24}, annote = {Keywords: Graph theory, Deterministic algorithm, Roundtrip spanners} }

Document

**Published in:** LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)

We present improved algorithms for solving the All Pairs Non-decreasing Paths (APNP) problem on weighted digraphs. Currently, the best upper bound on APNP is O~(n^{(9+omega)/4})=O(n^{2.844}), obtained by Vassilevska Williams [TALG 2010 and SODA'08], where omega<2.373 is the usual exponent of matrix multiplication. Our first algorithm improves the time bound to O~(n^{2+omega/3})=O(n^{2.791}). The algorithm determines, for every pair of vertices s, t, the minimum last edge weight on a non-decreasing path from s to t, where a non-decreasing path is a path on which the edge weights form a non-decreasing sequence. The algorithm proposed uses the combinatorial properties of non-decreasing paths. Also a slightly improved algorithm with running time O(n^{2.78}) is presented.

Ran Duan, Yong Gu, and Le Zhang. Improved Time Bounds for All Pairs Non-decreasing Paths in General Digraphs. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 44:1-44:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{duan_et_al:LIPIcs.ICALP.2018.44, author = {Duan, Ran and Gu, Yong and Zhang, Le}, title = {{Improved Time Bounds for All Pairs Non-decreasing Paths in General Digraphs}}, booktitle = {45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)}, pages = {44:1--44:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-076-7}, ISSN = {1868-8969}, year = {2018}, volume = {107}, editor = {Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.44}, URN = {urn:nbn:de:0030-drops-90487}, doi = {10.4230/LIPIcs.ICALP.2018.44}, annote = {Keywords: Graph algorithms, Matrix multiplication, Non-decreasing paths} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail