Search Results

Documents authored by Guan, Ji


Document
Model Checking Quantum Continuous-Time Markov Chains

Authors: Ming Xu, Jingyi Mei, Ji Guan, and Nengkun Yu

Published in: LIPIcs, Volume 203, 32nd International Conference on Concurrency Theory (CONCUR 2021)


Abstract
Verifying quantum systems has attracted a lot of interests in the last decades. In this paper, we initialise the model checking of quantum continuous-time Markov chain (QCTMC). As a real-time system, we specify the temporal properties on QCTMC by signal temporal logic (STL). To effectively check the atomic propositions in STL, we develop a state-of-the-art real root isolation algorithm under Schanuel’s conjecture; further, we check the general STL formula by interval operations with a bottom-up fashion, whose query complexity turns out to be linear in the size of the input formula by calling the real root isolation algorithm. A running example of an open quantum walk is provided to demonstrate our method.

Cite as

Ming Xu, Jingyi Mei, Ji Guan, and Nengkun Yu. Model Checking Quantum Continuous-Time Markov Chains. In 32nd International Conference on Concurrency Theory (CONCUR 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 203, pp. 13:1-13:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{xu_et_al:LIPIcs.CONCUR.2021.13,
  author =	{Xu, Ming and Mei, Jingyi and Guan, Ji and Yu, Nengkun},
  title =	{{Model Checking Quantum Continuous-Time Markov Chains}},
  booktitle =	{32nd International Conference on Concurrency Theory (CONCUR 2021)},
  pages =	{13:1--13:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-203-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{203},
  editor =	{Haddad, Serge and Varacca, Daniele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2021.13},
  URN =		{urn:nbn:de:0030-drops-143908},
  doi =		{10.4230/LIPIcs.CONCUR.2021.13},
  annote =	{Keywords: Model Checking, Formal Logic, Quantum Computing, Computer Algebra}
}
Document
From Independent Sets and Vertex Colorings to Isotropic Spaces and Isotropic Decompositions: Another Bridge Between Graphs and Alternating Matrix Spaces

Authors: Xiaohui Bei, Shiteng Chen, Ji Guan, Youming Qiao, and Xiaoming Sun

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
In the 1970’s, Lovász built a bridge between graphs and alternating matrix spaces, in the context of perfect matchings (FCT 1979). A similar connection between bipartite graphs and matrix spaces plays a key role in the recent resolutions of the non-commutative rank problem (Garg-Gurvits-Oliveira-Wigderson, FOCS 2016; Ivanyos-Qiao-Subrahmanyam, ITCS 2017). In this paper, we lay the foundation for another bridge between graphs and alternating matrix spaces, in the context of independent sets and vertex colorings. The corresponding structures in alternating matrix spaces are isotropic spaces and isotropic decompositions, both useful structures in group theory and manifold theory. We first show that the maximum independent set problem and the vertex c-coloring problem reduce to the maximum isotropic space problem and the isotropic c-decomposition problem, respectively. Next, we show that several topics and results about independent sets and vertex colorings have natural correspondences for isotropic spaces and decompositions. These include algorithmic problems, such as the maximum independent set problem for bipartite graphs, and exact exponential-time algorithms for the chromatic number, as well as mathematical questions, such as the number of maximal independent sets, and the relation between the maximum degree and the chromatic number. These connections lead to new interactions between graph theory and algebra. Some results have concrete applications to group theory and manifold theory, and we initiate a variant of these structures in the context of quantum information theory. Finally, we propose several open questions for further exploration. (Dedicated to the memory of Ker-I Ko)

Cite as

Xiaohui Bei, Shiteng Chen, Ji Guan, Youming Qiao, and Xiaoming Sun. From Independent Sets and Vertex Colorings to Isotropic Spaces and Isotropic Decompositions: Another Bridge Between Graphs and Alternating Matrix Spaces. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 8:1-8:48, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bei_et_al:LIPIcs.ITCS.2020.8,
  author =	{Bei, Xiaohui and Chen, Shiteng and Guan, Ji and Qiao, Youming and Sun, Xiaoming},
  title =	{{From Independent Sets and Vertex Colorings to Isotropic Spaces and Isotropic Decompositions: Another Bridge Between Graphs and Alternating Matrix Spaces}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{8:1--8:48},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.8},
  URN =		{urn:nbn:de:0030-drops-116932},
  doi =		{10.4230/LIPIcs.ITCS.2020.8},
  annote =	{Keywords: independent set, vertex coloring, graphs, matrix spaces, isotropic subspace}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail