Search Results

Documents authored by Hamann, Arne


Document
Control-System Stability Under Consecutive Deadline Misses Constraints

Authors: Martina Maggio, Arne Hamann, Eckart Mayer-John, and Dirk Ziegenbein

Published in: LIPIcs, Volume 165, 32nd Euromicro Conference on Real-Time Systems (ECRTS 2020)


Abstract
This paper deals with the real-time implementation of feedback controllers. In particular, it provides an analysis of the stability property of closed-loop systems that include a controller that can sporadically miss deadlines. In this context, the weakly hard m-K computational model has been widely adopted and researchers used it to design and verify controllers that are robust to deadline misses. Rather than using the m-K model, we focus on another weakly-hard model, the number of consecutive deadline misses, showing a neat mathematical connection between real-time systems and control theory. We formalise this connection using the joint spectral radius and we discuss how to prove stability guarantees on the combination of a controller (that is unaware of deadline misses) and its system-level implementation. We apply the proposed verification procedure to a synthetic example and to an industrial case study.

Cite as

Martina Maggio, Arne Hamann, Eckart Mayer-John, and Dirk Ziegenbein. Control-System Stability Under Consecutive Deadline Misses Constraints. In 32nd Euromicro Conference on Real-Time Systems (ECRTS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 165, pp. 21:1-21:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{maggio_et_al:LIPIcs.ECRTS.2020.21,
  author =	{Maggio, Martina and Hamann, Arne and Mayer-John, Eckart and Ziegenbein, Dirk},
  title =	{{Control-System Stability Under Consecutive Deadline Misses Constraints}},
  booktitle =	{32nd Euromicro Conference on Real-Time Systems (ECRTS 2020)},
  pages =	{21:1--21:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-152-8},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{165},
  editor =	{V\"{o}lp, Marcus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2020.21},
  URN =		{urn:nbn:de:0030-drops-123845},
  doi =		{10.4230/LIPIcs.ECRTS.2020.21},
  annote =	{Keywords: Real-Time Control, Deadline Misses, Weakly Hard Models}
}
Document
Communication Centric Design in Complex Automotive Embedded Systems

Authors: Arne Hamann, Dakshina Dasari, Simon Kramer, Michael Pressler, and Falk Wurst

Published in: LIPIcs, Volume 76, 29th Euromicro Conference on Real-Time Systems (ECRTS 2017)


Abstract
Automotive embedded applications like the engine management system are composed of multiple functional components that are tightly coupled via numerous communication dependencies and intensive data sharing, while also having real-time requirements. In order to cope with complexity, especially in multi-core settings, various communication mechanisms are used to ensure data consistency and temporal determinism along functional cause-effect chains. However, existing timing analysis methods generally only support very basic communication models that need to be extended to handle the analysis of industry grade problems which involve more complex communication semantics. In this work, we give an overview of communication semantics used in the automotive industry and the different constraints to be considered in the design process. We also propose a method for model transformation to increase the expressiveness of current timing analysis methods enabling them to work with more complex communication semantics. We demonstrate this transformation approach for concrete implementations of two communication semantics, namely, implicit and LET communication. We discuss the impact on end-to-end latencies and communication overheads based on a full blown engine management system.

Cite as

Arne Hamann, Dakshina Dasari, Simon Kramer, Michael Pressler, and Falk Wurst. Communication Centric Design in Complex Automotive Embedded Systems. In 29th Euromicro Conference on Real-Time Systems (ECRTS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 76, pp. 10:1-10:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{hamann_et_al:LIPIcs.ECRTS.2017.10,
  author =	{Hamann, Arne and Dasari, Dakshina and Kramer, Simon and Pressler, Michael and Wurst, Falk},
  title =	{{Communication Centric Design in Complex Automotive Embedded Systems}},
  booktitle =	{29th Euromicro Conference on Real-Time Systems (ECRTS 2017)},
  pages =	{10:1--10:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-037-8},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{76},
  editor =	{Bertogna, Marko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2017.10},
  URN =		{urn:nbn:de:0030-drops-71624},
  doi =		{10.4230/LIPIcs.ECRTS.2017.10},
  annote =	{Keywords: Communication semantics, logical execution time, implicit communication, automotive, embedded systems, scheduling simulation, Amalthea}
}