Search Results

Documents authored by Hanika, Tom

Towards Ordinal Data Science

Authors: Gerd Stumme, Dominik Dürrschnabel, and Tom Hanika

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1

Order is one of the main instruments to measure the relationship between objects in (empirical) data. However, compared to methods that use numerical properties of objects, the amount of ordinal methods developed is rather small. One reason for this is the limited availability of computational resources in the last century that would have been required for ordinal computations. Another reason - particularly important for this line of research - is that order-based methods are often seen as too mathematically rigorous for applying them to real-world data. In this paper, we will therefore discuss different means for measuring and ‘calculating’ with ordinal structures - a specific class of directed graphs - and show how to infer knowledge from them. Our aim is to establish Ordinal Data Science as a fundamentally new research agenda. Besides cross-fertilization with other cornerstone machine learning and knowledge representation methods, a broad range of disciplines will benefit from this endeavor, including, psychology, sociology, economics, web science, knowledge engineering, scientometrics.

Cite as

Gerd Stumme, Dominik Dürrschnabel, and Tom Hanika. Towards Ordinal Data Science. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 6:1-6:39, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

  author =	{Stumme, Gerd and D\"{u}rrschnabel, Dominik and Hanika, Tom},
  title =	{{Towards Ordinal Data Science}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{6:1--6:39},
  ISSN =	{2942-7517},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-194801},
  doi =		{10.4230/TGDK.1.1.6},
  annote =	{Keywords: Order relation, data science, relational theory of measurement, metric learning, general algebra, lattices, factorization, approximations and heuristics, factor analysis, visualization, browsing, explainability}
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail