Search Results

Documents authored by Horton, Michael


Document
On β-Plurality Points in Spatial Voting Games

Authors: Boris Aronov, Mark de Berg, Joachim Gudmundsson, and Michael Horton

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
Let V be a set of n points in ℝ^d, called voters. A point p ∈ ℝ^d is a plurality point for V when the following holds: for every q ∈ ℝ^d the number of voters closer to p than to q is at least the number of voters closer to q than to p. Thus, in a vote where each v ∈ V votes for the nearest proposal (and voters for which the proposals are at equal distance abstain), proposal p will not lose against any alternative proposal q. For most voter sets a plurality point does not exist. We therefore introduce the concept of β-plurality points, which are defined similarly to regular plurality points except that the distance of each voter to p (but not to q) is scaled by a factor β, for some constant 0<β⩽1. We investigate the existence and computation of β-plurality points, and obtain the following results. - Define β^*_d := sup{β : any finite multiset V in ℝ^d admits a β-plurality point}. We prove that β^*₂ = √3/2, and that 1/√d ⩽ β^*_d ⩽ √3/2 for all d⩾3. - Define β(V) := sup {β : V admits a β-plurality point}. We present an algorithm that, given a voter set V in {ℝ}^d, computes an (1-ε)⋅ β(V) plurality point in time O(n²/ε^(3d-2) ⋅ log(n/ε^(d-1)) ⋅ log²(1/ε)).

Cite as

Boris Aronov, Mark de Berg, Joachim Gudmundsson, and Michael Horton. On β-Plurality Points in Spatial Voting Games. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 7:1-7:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{aronov_et_al:LIPIcs.SoCG.2020.7,
  author =	{Aronov, Boris and de Berg, Mark and Gudmundsson, Joachim and Horton, Michael},
  title =	{{On \beta-Plurality Points in Spatial Voting Games}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{7:1--7:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.7},
  URN =		{urn:nbn:de:0030-drops-121651},
  doi =		{10.4230/LIPIcs.SoCG.2020.7},
  annote =	{Keywords: Computational geometry, Spatial voting theory, Plurality point, Computational social choice}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail