Found 2 Possible Name Variants:

Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)

We study the problem of counting the number of homomorphisms from an input graph G to a fixed (quantum) graph ̄{H} in any finite field of prime order ℤ_p. The subproblem with graph H was introduced by Faben and Jerrum [ToC'15] and its complexity is still uncharacterised despite active research, e.g. the very recent work of Focke, Goldberg, Roth, and Zivný [SODA'21]. Our contribution is threefold.
First, we introduce the study of quantum graphs to the study of modular counting homomorphisms. We show that the complexity for a quantum graph ̄{H} collapses to the complexity criteria found at dimension 1: graphs. Second, in order to prove cases of intractability we establish a further reduction to the study of bipartite graphs. Lastly, we establish a dichotomy for all bipartite (K_{3,3}$1{e}, {domino})-free graphs by a thorough structural study incorporating both local and global arguments. This result subsumes all results on bipartite graphs known for all prime moduli and extends them significantly. Even for the subproblem with p = 2 this establishes new results.

J. A. Gregor Lagodzinski, Andreas Göbel, Katrin Casel, and Tobias Friedrich. On Counting (Quantum-)Graph Homomorphisms in Finite Fields of Prime Order. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 91:1-91:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{lagodzinski_et_al:LIPIcs.ICALP.2021.91, author = {Lagodzinski, J. A. Gregor and G\"{o}bel, Andreas and Casel, Katrin and Friedrich, Tobias}, title = {{On Counting (Quantum-)Graph Homomorphisms in Finite Fields of Prime Order}}, booktitle = {48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)}, pages = {91:1--91:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-195-5}, ISSN = {1868-8969}, year = {2021}, volume = {198}, editor = {Bansal, Nikhil and Merelli, Emanuela and Worrell, James}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.91}, URN = {urn:nbn:de:0030-drops-141608}, doi = {10.4230/LIPIcs.ICALP.2021.91}, annote = {Keywords: Algorithms, Theory, Quantum Graphs, Bipartite Graphs, Graph Homomorphisms, Modular Counting, Complexity Dichotomy} }

Document

**Published in:** LIPIcs, Volume 117, 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)

Many important graph theoretic notions can be encoded as counting graph homomorphism problems, such as partition functions in statistical physics, in particular independent sets and colourings. In this article we study the complexity of #_pHomsToH, the problem of counting graph homomorphisms from an input graph to a graph H modulo a prime number p. Dyer and Greenhill proved a dichotomy stating that the tractability of non-modular counting graph homomorphisms depends on the structure of the target graph. Many intractable cases in non-modular counting become tractable in modular counting due to the common phenomenon of cancellation. In subsequent studies on counting modulo 2, however, the influence of the structure of H on the tractability was shown to persist, which yields similar dichotomies.
Our main result states that for every tree H and every prime p the problem #_pHomsToH is either polynomial time computable or #_pP-complete. This relates to the conjecture of Faben and Jerrum stating that this dichotomy holds for every graph H when counting modulo 2. In contrast to previous results on modular counting, the tractable cases of #_pHomsToH are essentially the same for all values of the modulo when H is a tree. To prove this result, we study the structural properties of a homomorphism. As an important interim result, our study yields a dichotomy for the problem of counting weighted independent sets in a bipartite graph modulo some prime p. These results are the first suggesting that such dichotomies hold not only for the one-bit functions of the modulo 2 case but also for the modular counting functions of all primes p.

Andreas Göbel, J. A. Gregor Lagodzinski, and Karen Seidel. Counting Homomorphisms to Trees Modulo a Prime. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 117, pp. 49:1-49:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{gobel_et_al:LIPIcs.MFCS.2018.49, author = {G\"{o}bel, Andreas and Lagodzinski, J. A. Gregor and Seidel, Karen}, title = {{Counting Homomorphisms to Trees Modulo a Prime}}, booktitle = {43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)}, pages = {49:1--49:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-086-6}, ISSN = {1868-8969}, year = {2018}, volume = {117}, editor = {Potapov, Igor and Spirakis, Paul and Worrell, James}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2018.49}, URN = {urn:nbn:de:0030-drops-96315}, doi = {10.4230/LIPIcs.MFCS.2018.49}, annote = {Keywords: Algorithms, Theory, Graph Homomorphisms, Counting Modulo a Prime, Complexity Dichotomy} }

Document

**Published in:** LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)

We combine ideas from distance sensitivity oracles (DSOs) and fixed-parameter tractability (FPT) to design sensitivity oracles for FPT graph problems. An oracle with sensitivity f for an FPT problem Π on a graph G with parameter k preprocesses G in time O(g(f,k) ⋅ poly(n)). When queried with a set F of at most f edges of G, the oracle reports the answer to the Π - with the same parameter k - on the graph G-F, i.e., G deprived of F. The oracle should answer queries in a time that is significantly faster than merely running the best-known FPT algorithm on G-F from scratch.
We design sensitivity oracles for the k-Path and the k-Vertex Cover problem. Our first oracle for k-Path has size O(k^{f+1}) and query time O(f min{f, log(f) + k}). We use a technique inspired by the work of Weimann and Yuster [FOCS 2010, TALG 2013] on distance sensitivity problems to reduce the space to O(({f+k}/f)^f ({f+k}/k)^k fk⋅log(n)) at the expense of increasing the query time to O(({f+k}/f)^f ({f+k}/k)^k f min{f,k}⋅log(n)). Both oracles can be modified to handle vertex-failures, but we need to replace k with 2k in all the claimed bounds.
Regarding k-Vertex Cover, we design three oracles offering different trade-offs between the size and the query time. The first oracle takes O(3^{f+k}) space and has O(2^f) query time, the second one has a size of O(2^{f+k²+k}) and a query time of O(f+k²); finally, the third one takes O(fk+k²) space and can be queried in time O(1.2738^k + f). All our oracles are computable in time (at most) proportional to their size and the time needed to detect a k-path or k-vertex cover, respectively. We also provide an interesting connection between k-Vertex Cover and the fault-tolerant shortest path problem, by giving a DSO of size O(poly(f,k) ⋅ n) with query time in O(poly(f,k)), where k is the size of a vertex cover.
Following our line of research connecting fault-tolerant FPT and shortest paths problems, we introduce parameterization to the computation of distance preservers. We study the problem, given a directed unweighted graph with a fixed source s and parameters f and k, to construct a polynomial-sized oracle that efficiently reports, for any target vertex v and set F of at most f edges, whether the distance from s to v increases at most by an additive term of k in G-F. The oracle size is O(2^k k²⋅n), while the time needed to answer a query is O(2^k f^ω k^ω), where ω < 2.373 is the matrix multiplication exponent. The second problem we study is about the construction of bounded-stretch fault-tolerant preservers. We construct a subgraph with O(2^{fk+f+k} k ⋅ n) edges that preserves those s-v-distances that do not increase by more than k upon failure of F. This improves significantly over the Õ(f n^{2-1/(2^f)}) bound in the unparameterized case by Bodwin et al. [ICALP 2017].

Davide Bilò, Katrin Casel, Keerti Choudhary, Sarel Cohen, Tobias Friedrich, J.A. Gregor Lagodzinski, Martin Schirneck, and Simon Wietheger. Fixed-Parameter Sensitivity Oracles. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 23:1-23:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{bilo_et_al:LIPIcs.ITCS.2022.23, author = {Bil\`{o}, Davide and Casel, Katrin and Choudhary, Keerti and Cohen, Sarel and Friedrich, Tobias and Lagodzinski, J.A. Gregor and Schirneck, Martin and Wietheger, Simon}, title = {{Fixed-Parameter Sensitivity Oracles}}, booktitle = {13th Innovations in Theoretical Computer Science Conference (ITCS 2022)}, pages = {23:1--23:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-217-4}, ISSN = {1868-8969}, year = {2022}, volume = {215}, editor = {Braverman, Mark}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.23}, URN = {urn:nbn:de:0030-drops-156196}, doi = {10.4230/LIPIcs.ITCS.2022.23}, annote = {Keywords: data structures, distance preservers, distance sensitivity oracles, fault tolerance, fixed-parameter tractability, k-path, vertex cover} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail