Search Results

Documents authored by Lee, David J.


Found 2 Possible Name Variants:

Lee, David J.

Document
Telescoping Filter: A Practical Adaptive Filter

Authors: David J. Lee, Samuel McCauley, Shikha Singh, and Max Stein

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
Filters are small, fast, and approximate set membership data structures. They are often used to filter out expensive accesses to a remote set S for negative queries (that is, filtering out queries x ∉ S). Filters have one-sided errors: on a negative query, a filter may say "present" with a tunable false-positive probability of ε. Correctness is traded for space: filters only use log (1/ε) + O(1) bits per element. The false-positive guarantees of most filters, however, hold only for a single query. In particular, if x is a false positive, a subsequent query to x is a false positive with probability 1, not ε. With this in mind, recent work has introduced the notion of an adaptive filter. A filter is adaptive if each query is a false positive with probability ε, regardless of answers to previous queries. This requires "fixing" false positives as they occur. Adaptive filters not only provide strong false positive guarantees in adversarial environments but also improve query performance on practical workloads by eliminating repeated false positives. Existing work on adaptive filters falls into two categories. On the one hand, there are practical filters, based on the cuckoo filter, that attempt to fix false positives heuristically without meeting the adaptivity guarantee. On the other hand, the broom filter is a very complex adaptive filter that meets the optimal theoretical bounds. In this paper, we bridge this gap by designing the telescoping adaptive filter (TAF), a practical, provably adaptive filter. We provide theoretical false-positive and space guarantees for our filter, along with empirical results where we compare its performance against state-of-the-art filters. We also implement the broom filter and compare it to the TAF. Our experiments show that theoretical adaptivity can lead to improved false-positive performance on practical inputs, and can be achieved while maintaining throughput that is similar to non-adaptive filters.

Cite as

David J. Lee, Samuel McCauley, Shikha Singh, and Max Stein. Telescoping Filter: A Practical Adaptive Filter. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 60:1-60:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{lee_et_al:LIPIcs.ESA.2021.60,
  author =	{Lee, David J. and McCauley, Samuel and Singh, Shikha and Stein, Max},
  title =	{{Telescoping Filter: A Practical Adaptive Filter}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{60:1--60:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.60},
  URN =		{urn:nbn:de:0030-drops-146410},
  doi =		{10.4230/LIPIcs.ESA.2021.60},
  annote =	{Keywords: Filters, approximate-membership query data structures (AMQs), Bloom filters, quotient filters, cuckoo filters, adaptivity, succinct data structures}
}

Lee, Matias David

Document
Logical Characterization of Bisimulation for Transition Relations over Probability Distributions with Internal Actions

Authors: Matias David Lee and Erik P. de Vink

Published in: LIPIcs, Volume 58, 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)


Abstract
In recent years the study of probabilistic transition systems has shifted to transition relations over distributions to allow for a smooth adaptation of the standard non-probabilistic apparatus. In this paper we study transition relations over probability distributions in a setting with internal actions. We provide new logics that characterize probabilistic strong, weak and branching bisimulation. Because these semantics may be considered too strong in the probabilistic context, Eisentraut et al. recently proposed weak distribution bisimulation. To show the flexibility of our approach based on the framework of van Glabbeek for the non-deterministic setting, we provide a novel logical characterization for the latter probabilistic equivalence as well.

Cite as

Matias David Lee and Erik P. de Vink. Logical Characterization of Bisimulation for Transition Relations over Probability Distributions with Internal Actions. In 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 58, pp. 29:1-29:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{lee_et_al:LIPIcs.MFCS.2016.29,
  author =	{Lee, Matias David and de Vink, Erik P.},
  title =	{{Logical Characterization of Bisimulation for Transition Relations over Probability Distributions with Internal Actions}},
  booktitle =	{41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)},
  pages =	{29:1--29:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-016-3},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{58},
  editor =	{Faliszewski, Piotr and Muscholl, Anca and Niedermeier, Rolf},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2016.29},
  URN =		{urn:nbn:de:0030-drops-64441},
  doi =		{10.4230/LIPIcs.MFCS.2016.29},
  annote =	{Keywords: probabilistic transition systems, weak bisimulations, logical characterization, transition relation over distributions, modal logics}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail