Document

**Published in:** LIPIcs, Volume 219, 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)

We investigate the complexity of finding a transformation from a given spanning tree in a graph to another given spanning tree in the same graph via a sequence of edge flips. The exchange property of the matroid bases immediately yields that such a transformation always exists if we have no constraints on spanning trees. In this paper, we wish to find a transformation which passes through only spanning trees satisfying some constraint. Our focus is bounding either the maximum degree or the diameter of spanning trees, and we give the following results. The problem with a lower bound on maximum degree is solvable in polynomial time, while the problem with an upper bound on maximum degree is PSPACE-complete. The problem with a lower bound on diameter is NP-hard, while the problem with an upper bound on diameter is solvable in polynomial time.

Nicolas Bousquet, Takehiro Ito, Yusuke Kobayashi, Haruka Mizuta, Paul Ouvrard, Akira Suzuki, and Kunihiro Wasa. Reconfiguration of Spanning Trees with Degree Constraint or Diameter Constraint. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 219, pp. 15:1-15:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{bousquet_et_al:LIPIcs.STACS.2022.15, author = {Bousquet, Nicolas and Ito, Takehiro and Kobayashi, Yusuke and Mizuta, Haruka and Ouvrard, Paul and Suzuki, Akira and Wasa, Kunihiro}, title = {{Reconfiguration of Spanning Trees with Degree Constraint or Diameter Constraint}}, booktitle = {39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)}, pages = {15:1--15:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-222-8}, ISSN = {1868-8969}, year = {2022}, volume = {219}, editor = {Berenbrink, Petra and Monmege, Benjamin}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2022.15}, URN = {urn:nbn:de:0030-drops-158253}, doi = {10.4230/LIPIcs.STACS.2022.15}, annote = {Keywords: combinatorial reconfiguration, spanning trees, PSPACE, polynomial-time algorithms} }

Document

**Published in:** LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)

Let G be a graph and T₁,T₂ be two spanning trees of G. We say that T₁ can be transformed into T₂ via an edge flip if there exist two edges e ∈ T₁ and f in T₂ such that T₂ = (T₁⧵e) ∪ f. Since spanning trees form a matroid, one can indeed transform a spanning tree into any other via a sequence of edge flips, as observed in [Takehiro Ito et al., 2011].
We investigate the problem of determining, given two spanning trees T₁,T₂ with an additional property Π, if there exists an edge flip transformation from T₁ to T₂ keeping property Π all along.
First we show that determining if there exists a transformation from T₁ to T₂ such that all the trees of the sequence have at most k (for any fixed k ≥ 3) leaves is PSPACE-complete.
We then prove that determining if there exists a transformation from T₁ to T₂ such that all the trees of the sequence have at least k leaves (where k is part of the input) is PSPACE-complete even restricted to split, bipartite or planar graphs. We complete this result by showing that the problem becomes polynomial for cographs, interval graphs and when k = n-2.

Nicolas Bousquet, Takehiro Ito, Yusuke Kobayashi, Haruka Mizuta, Paul Ouvrard, Akira Suzuki, and Kunihiro Wasa. Reconfiguration of Spanning Trees with Many or Few Leaves. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 24:1-24:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{bousquet_et_al:LIPIcs.ESA.2020.24, author = {Bousquet, Nicolas and Ito, Takehiro and Kobayashi, Yusuke and Mizuta, Haruka and Ouvrard, Paul and Suzuki, Akira and Wasa, Kunihiro}, title = {{Reconfiguration of Spanning Trees with Many or Few Leaves}}, booktitle = {28th Annual European Symposium on Algorithms (ESA 2020)}, pages = {24:1--24:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-162-7}, ISSN = {1868-8969}, year = {2020}, volume = {173}, editor = {Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.24}, URN = {urn:nbn:de:0030-drops-128909}, doi = {10.4230/LIPIcs.ESA.2020.24}, annote = {Keywords: combinatorial reconfiguration, spanning trees, PSPACE, polynomial-time algorithms} }

Document

**Published in:** LIPIcs, Volume 154, 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)

A k-coloring of a graph maps each vertex of the graph to a color in {1, 2, …, k}, such that no two adjacent vertices receive the same color. Given a k-coloring of a graph, a Kempe change produces a new k-coloring by swapping the colors in a bicolored connected component. We investigate the complexity of finding the smallest number of Kempe changes needed to transform a given k-coloring into another given k-coloring. We show that this problem admits a polynomial-time dynamic programming algorithm on path graphs, which turns out to be highly non-trivial. Furthermore, the problem is NP-hard even on star graphs and we show that on such graphs it admits a constant-factor approximation algorithm and is fixed-parameter tractable when parameterized by the number k of colors. The hardness result as well as the algorithmic results are based on the notion of a canonical transformation.

Marthe Bonamy, Marc Heinrich, Takehiro Ito, Yusuke Kobayashi, Haruka Mizuta, Moritz Mühlenthaler, Akira Suzuki, and Kunihiro Wasa. Shortest Reconfiguration of Colorings Under Kempe Changes. In 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 154, pp. 35:1-35:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{bonamy_et_al:LIPIcs.STACS.2020.35, author = {Bonamy, Marthe and Heinrich, Marc and Ito, Takehiro and Kobayashi, Yusuke and Mizuta, Haruka and M\"{u}hlenthaler, Moritz and Suzuki, Akira and Wasa, Kunihiro}, title = {{Shortest Reconfiguration of Colorings Under Kempe Changes}}, booktitle = {37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)}, pages = {35:1--35:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-140-5}, ISSN = {1868-8969}, year = {2020}, volume = {154}, editor = {Paul, Christophe and Bl\"{a}ser, Markus}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2020.35}, URN = {urn:nbn:de:0030-drops-118961}, doi = {10.4230/LIPIcs.STACS.2020.35}, annote = {Keywords: Combinatorial Reconfiguration, Graph Algorithms, Graph Coloring, Kempe Equivalence} }

Document

**Published in:** LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)

In this paper, we study the problem of deciding if there is a transformation between two given minimum Steiner trees of an unweighted graph such that each transformation step respects a prescribed reconfiguration rule and results in another minimum Steiner tree of the graph. We consider two reconfiguration rules, both of which exchange a single vertex at a time, and generalize the known reconfiguration problem for shortest paths in an unweighted graph. This generalization implies that our problems under both reconfiguration rules are PSPACE-complete for bipartite graphs. We thus study the problems with respect to graph classes, and give some boundaries between the polynomial-time solvable and PSPACE-complete cases.

Haruka Mizuta, Tatsuhiko Hatanaka, Takehiro Ito, and Xiao Zhou. Reconfiguration of Minimum Steiner Trees via Vertex Exchanges. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 79:1-79:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{mizuta_et_al:LIPIcs.MFCS.2019.79, author = {Mizuta, Haruka and Hatanaka, Tatsuhiko and Ito, Takehiro and Zhou, Xiao}, title = {{Reconfiguration of Minimum Steiner Trees via Vertex Exchanges}}, booktitle = {44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)}, pages = {79:1--79:11}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-117-7}, ISSN = {1868-8969}, year = {2019}, volume = {138}, editor = {Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.79}, URN = {urn:nbn:de:0030-drops-110234}, doi = {10.4230/LIPIcs.MFCS.2019.79}, annote = {Keywords: Combinatorial reconfiguration, Graph algorithms, Steiner tree} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail