Search Results

Documents authored by Morgan, Andrew


Document
Polynomial Identity Testing via Evaluation of Rational Functions

Authors: Dieter van Melkebeek and Andrew Morgan

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
We introduce a hitting set generator for Polynomial Identity Testing based on evaluations of low-degree univariate rational functions at abscissas associated with the variables. In spite of the univariate nature, we establish an equivalence up to rescaling with a generator introduced by Shpilka and Volkovich, which has a similar structure but uses multivariate polynomials in the abscissas. We study the power of the generator by characterizing its vanishing ideal, i.e., the set of polynomials that it fails to hit. Capitalizing on the univariate nature, we develop a small collection of polynomials that jointly produce the vanishing ideal. As corollaries, we obtain tight bounds on the minimum degree, sparseness, and partition size of set-multi-linearity in the vanishing ideal. Inspired by an alternating algebra representation, we develop a structured deterministic membership test for the vanishing ideal. As a proof of concept we rederive known derandomization results based on the generator by Shpilka and Volkovich, and present a new application for read-once oblivious arithmetic branching programs that provably transcends the usual combinatorial techniques.

Cite as

Dieter van Melkebeek and Andrew Morgan. Polynomial Identity Testing via Evaluation of Rational Functions. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 119:1-119:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{vanmelkebeek_et_al:LIPIcs.ITCS.2022.119,
  author =	{van Melkebeek, Dieter and Morgan, Andrew},
  title =	{{Polynomial Identity Testing via Evaluation of Rational Functions}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{119:1--119:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.119},
  URN =		{urn:nbn:de:0030-drops-157158},
  doi =		{10.4230/LIPIcs.ITCS.2022.119},
  annote =	{Keywords: Derandomization, Gr\"{o}bner Basis, Lower Bounds, Polynomial Identity Testing}
}
Document
Minimum Circuit Size, Graph Isomorphism, and Related Problems

Authors: Eric Allender, Joshua A. Grochow, Dieter van Melkebeek, Cristopher Moore, and Andrew Morgan

Published in: LIPIcs, Volume 94, 9th Innovations in Theoretical Computer Science Conference (ITCS 2018)


Abstract
We study the computational power of deciding whether a given truth-table can be described by a circuit of a given size (the Minimum Circuit Size Problem, or MCSP for short), and of the variant denoted MKTP where circuit size is replaced by a polynomially-related Kolmogorov measure. All prior reductions from supposedly-intractable problems to MCSP / MKTP hinged on the power of MCSP / MKTP to distinguish random distributions from distributions produced by hardness-based pseudorandom generator constructions. We develop a fundamentally different approach inspired by the well-known interactive proof system for the complement of Graph Isomorphism (GI). It yields a randomized reduction with zero-sided error from GI to MKTP. We generalize the result and show that GI can be replaced by any isomorphism problem for which the underlying group satisfies some elementary properties. Instantiations include Linear Code Equivalence, Permutation Group Conjugacy, and Matrix Subspace Conjugacy. Along the way we develop encodings of isomorphism classes that are efficiently decodable and achieve compression that is at or near the information-theoretic optimum; those encodings may be of independent interest.

Cite as

Eric Allender, Joshua A. Grochow, Dieter van Melkebeek, Cristopher Moore, and Andrew Morgan. Minimum Circuit Size, Graph Isomorphism, and Related Problems. In 9th Innovations in Theoretical Computer Science Conference (ITCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 94, pp. 20:1-20:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{allender_et_al:LIPIcs.ITCS.2018.20,
  author =	{Allender, Eric and Grochow, Joshua A. and van Melkebeek, Dieter and Moore, Cristopher and Morgan, Andrew},
  title =	{{Minimum Circuit Size, Graph Isomorphism, and Related Problems}},
  booktitle =	{9th Innovations in Theoretical Computer Science Conference (ITCS 2018)},
  pages =	{20:1--20:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-060-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{94},
  editor =	{Karlin, Anna R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2018.20},
  URN =		{urn:nbn:de:0030-drops-83455},
  doi =		{10.4230/LIPIcs.ITCS.2018.20},
  annote =	{Keywords: Reductions between NP-intermediate problems, Graph Isomorphism, Minimum Circuit Size Problem, time-bounded Kolmogorov complexity}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail