Search Results

Documents authored by Natura, Bento


Document
The Pareto Cover Problem

Authors: Bento Natura, Meike Neuwohner, and Stefan Weltge

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
We introduce the problem of finding a set B of k points in [0,1]ⁿ such that the expected cost of the cheapest point in B that dominates a random point from [0,1]ⁿ is minimized. We study the case where the coordinates of the random points are independently distributed and the cost function is linear. This problem arises naturally in various application areas where customers' requests are satisfied based on predefined products, each corresponding to a subset of features. We show that the problem is NP-hard already for k = 2 when each coordinate is drawn from {0,1}, and obtain an FPTAS for general fixed k under mild assumptions on the distributions.

Cite as

Bento Natura, Meike Neuwohner, and Stefan Weltge. The Pareto Cover Problem. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 80:1-80:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{natura_et_al:LIPIcs.ESA.2022.80,
  author =	{Natura, Bento and Neuwohner, Meike and Weltge, Stefan},
  title =	{{The Pareto Cover Problem}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{80:1--80:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.80},
  URN =		{urn:nbn:de:0030-drops-170186},
  doi =		{10.4230/LIPIcs.ESA.2022.80},
  annote =	{Keywords: Pareto, Covering, Optimization, Approximation Algorithm}
}
Document
Track A: Algorithms, Complexity and Games
A Faster Interior-Point Method for Sum-Of-Squares Optimization

Authors: Shunhua Jiang, Bento Natura, and Omri Weinstein

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We present a faster interior-point method for optimizing sum-of-squares (SOS) polynomials, which are a central tool in polynomial optimization and capture convex programming in the Lasserre hierarchy. Let p = ∑_i q²_i be an n-variate SOS polynomial of degree 2d. Denoting by L : = binom(n+d,d) and U : = binom(n+2d,2d) the dimensions of the vector spaces in which q_i’s and p live respectively, our algorithm runs in time Õ(LU^{1.87}). This is polynomially faster than state-of-art SOS and semidefinite programming solvers [Jiang et al., 2020; Huang et al., 2021; Papp and Yildiz, 2019], which achieve runtime Õ(L^{0.5} min{U^{2.37}, L^{4.24}}). The centerpiece of our algorithm is a dynamic data structure for maintaining the inverse of the Hessian of the SOS barrier function under the polynomial interpolant basis [Papp and Yildiz, 2019], which efficiently extends to multivariate SOS optimization, and requires maintaining spectral approximations to low-rank perturbations of elementwise (Hadamard) products. This is the main challenge and departure from recent IPM breakthroughs using inverse-maintenance, where low-rank updates to the slack matrix readily imply the same for the Hessian matrix.

Cite as

Shunhua Jiang, Bento Natura, and Omri Weinstein. A Faster Interior-Point Method for Sum-Of-Squares Optimization. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 79:1-79:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{jiang_et_al:LIPIcs.ICALP.2022.79,
  author =	{Jiang, Shunhua and Natura, Bento and Weinstein, Omri},
  title =	{{A Faster Interior-Point Method for Sum-Of-Squares Optimization}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{79:1--79:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.79},
  URN =		{urn:nbn:de:0030-drops-164205},
  doi =		{10.4230/LIPIcs.ICALP.2022.79},
  annote =	{Keywords: Interior Point Methods, Sum-of-squares Optimization, Dynamic Matrix Inverse}
}
Document
An Accelerated Newton-Dinkelbach Method and Its Application to Two Variables per Inequality Systems

Authors: Daniel Dadush, Zhuan Khye Koh, Bento Natura, and László A. Végh

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
We present an accelerated, or "look-ahead" version of the Newton-Dinkelbach method, a well-known technique for solving fractional and parametric optimization problems. This acceleration halves the Bregman divergence between the current iterate and the optimal solution within every two iterations. Using the Bregman divergence as a potential in conjunction with combinatorial arguments, we obtain strongly polynomial algorithms in three applications domains: (i) For linear fractional combinatorial optimization, we show a convergence bound of O(mlog m) iterations; the previous best bound was O(m²log m) by Wang et al. (2006). (ii) We obtain a strongly polynomial label-correcting algorithm for solving linear feasibility systems with two variables per inequality (2VPI). For a 2VPI system with n variables and m constraints, our algorithm runs in O(mn) iterations. Every iteration takes O(mn) time for general 2VPI systems, and O(m + nlog n) time for the special case of deterministic Markov Decision Processes (DMDPs). This extends and strengthens a previous result by Madani (2002) that showed a weakly polynomial bound for a variant of the Newton–Dinkelbach method for solving DMDPs. (iii) We give a simplified variant of the parametric submodular function minimization result by Goemans et al. (2017).

Cite as

Daniel Dadush, Zhuan Khye Koh, Bento Natura, and László A. Végh. An Accelerated Newton-Dinkelbach Method and Its Application to Two Variables per Inequality Systems. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 36:1-36:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{dadush_et_al:LIPIcs.ESA.2021.36,
  author =	{Dadush, Daniel and Koh, Zhuan Khye and Natura, Bento and V\'{e}gh, L\'{a}szl\'{o} A.},
  title =	{{An Accelerated Newton-Dinkelbach Method and Its Application to Two Variables per Inequality Systems}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{36:1--36:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.36},
  URN =		{urn:nbn:de:0030-drops-146172},
  doi =		{10.4230/LIPIcs.ESA.2021.36},
  annote =	{Keywords: Newton-Dinkelbach method, fractional optimization, parametric optimization, strongly polynomial algorithms, two variables per inequality systems, Markov decision processes, submodular function minimization}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail