Document

**Published in:** LIPIcs, Volume 219, 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)

We investigate the complexity of finding a transformation from a given spanning tree in a graph to another given spanning tree in the same graph via a sequence of edge flips. The exchange property of the matroid bases immediately yields that such a transformation always exists if we have no constraints on spanning trees. In this paper, we wish to find a transformation which passes through only spanning trees satisfying some constraint. Our focus is bounding either the maximum degree or the diameter of spanning trees, and we give the following results. The problem with a lower bound on maximum degree is solvable in polynomial time, while the problem with an upper bound on maximum degree is PSPACE-complete. The problem with a lower bound on diameter is NP-hard, while the problem with an upper bound on diameter is solvable in polynomial time.

Nicolas Bousquet, Takehiro Ito, Yusuke Kobayashi, Haruka Mizuta, Paul Ouvrard, Akira Suzuki, and Kunihiro Wasa. Reconfiguration of Spanning Trees with Degree Constraint or Diameter Constraint. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 219, pp. 15:1-15:21, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{bousquet_et_al:LIPIcs.STACS.2022.15, author = {Bousquet, Nicolas and Ito, Takehiro and Kobayashi, Yusuke and Mizuta, Haruka and Ouvrard, Paul and Suzuki, Akira and Wasa, Kunihiro}, title = {{Reconfiguration of Spanning Trees with Degree Constraint or Diameter Constraint}}, booktitle = {39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)}, pages = {15:1--15:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-222-8}, ISSN = {1868-8969}, year = {2022}, volume = {219}, editor = {Berenbrink, Petra and Monmege, Benjamin}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2022.15}, URN = {urn:nbn:de:0030-drops-158253}, doi = {10.4230/LIPIcs.STACS.2022.15}, annote = {Keywords: combinatorial reconfiguration, spanning trees, PSPACE, polynomial-time algorithms} }

Document

**Published in:** LIPIcs, Volume 181, 31st International Symposium on Algorithms and Computation (ISAAC 2020)

Given a graph G and an integer k, a token addition and removal (TAR for short) reconfiguration sequence between two dominating sets D_s and D_t of size at most k is a sequence S = ⟨ D₀ = D_s, D₁ …, D_𝓁 = D_t ⟩ of dominating sets of G such that any two consecutive dominating sets differ by the addition or deletion of one vertex, and no dominating set has size bigger than k.
We first improve a result of Haas and Seyffarth [R. Haas and K. Seyffarth, 2017], by showing that if k = Γ(G)+α(G)-1 (where Γ(G) is the maximum size of a minimal dominating set and α(G) the maximum size of an independent set), then there exists a linear TAR reconfiguration sequence between any pair of dominating sets.
We then improve these results on several graph classes by showing that the same holds for K_𝓁-minor free graph as long as k ≥ Γ(G)+O(𝓁 √(log 𝓁)) and for planar graphs whenever k ≥ Γ(G)+3. Finally, we show that if k = Γ(G)+tw(G)+1, then there also exists a linear transformation between any pair of dominating sets.

Nicolas Bousquet, Alice Joffard, and Paul Ouvrard. Linear Transformations Between Dominating Sets in the TAR-Model. In 31st International Symposium on Algorithms and Computation (ISAAC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 181, pp. 37:1-37:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{bousquet_et_al:LIPIcs.ISAAC.2020.37, author = {Bousquet, Nicolas and Joffard, Alice and Ouvrard, Paul}, title = {{Linear Transformations Between Dominating Sets in the TAR-Model}}, booktitle = {31st International Symposium on Algorithms and Computation (ISAAC 2020)}, pages = {37:1--37:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-173-3}, ISSN = {1868-8969}, year = {2020}, volume = {181}, editor = {Cao, Yixin and Cheng, Siu-Wing and Li, Minming}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2020.37}, URN = {urn:nbn:de:0030-drops-133812}, doi = {10.4230/LIPIcs.ISAAC.2020.37}, annote = {Keywords: reconfiguration, dominating sets, addition removal, connectivity, diameter, minor, treewidth} }

Document

**Published in:** LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)

Let G be a graph and T₁,T₂ be two spanning trees of G. We say that T₁ can be transformed into T₂ via an edge flip if there exist two edges e ∈ T₁ and f in T₂ such that T₂ = (T₁⧵e) ∪ f. Since spanning trees form a matroid, one can indeed transform a spanning tree into any other via a sequence of edge flips, as observed in [Takehiro Ito et al., 2011].
We investigate the problem of determining, given two spanning trees T₁,T₂ with an additional property Π, if there exists an edge flip transformation from T₁ to T₂ keeping property Π all along.
First we show that determining if there exists a transformation from T₁ to T₂ such that all the trees of the sequence have at most k (for any fixed k ≥ 3) leaves is PSPACE-complete.
We then prove that determining if there exists a transformation from T₁ to T₂ such that all the trees of the sequence have at least k leaves (where k is part of the input) is PSPACE-complete even restricted to split, bipartite or planar graphs. We complete this result by showing that the problem becomes polynomial for cographs, interval graphs and when k = n-2.

Nicolas Bousquet, Takehiro Ito, Yusuke Kobayashi, Haruka Mizuta, Paul Ouvrard, Akira Suzuki, and Kunihiro Wasa. Reconfiguration of Spanning Trees with Many or Few Leaves. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 24:1-24:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{bousquet_et_al:LIPIcs.ESA.2020.24, author = {Bousquet, Nicolas and Ito, Takehiro and Kobayashi, Yusuke and Mizuta, Haruka and Ouvrard, Paul and Suzuki, Akira and Wasa, Kunihiro}, title = {{Reconfiguration of Spanning Trees with Many or Few Leaves}}, booktitle = {28th Annual European Symposium on Algorithms (ESA 2020)}, pages = {24:1--24:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-162-7}, ISSN = {1868-8969}, year = {2020}, volume = {173}, editor = {Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.24}, URN = {urn:nbn:de:0030-drops-128909}, doi = {10.4230/LIPIcs.ESA.2020.24}, annote = {Keywords: combinatorial reconfiguration, spanning trees, PSPACE, polynomial-time algorithms} }

Document

**Published in:** LIPIcs, Volume 121, 32nd International Symposium on Distributed Computing (DISC 2018)

Given two colorings of a graph, we consider the following problem: can we recolor the graph from one coloring to the other through a series of elementary changes, such that the graph is properly colored after each step?
We introduce the notion of distributed recoloring: The input graph represents a network of computers that needs to be recolored. Initially, each node is aware of its own input color and target color. The nodes can exchange messages with each other, and eventually each node has to stop and output its own recoloring schedule, indicating when and how the node changes its color. The recoloring schedules have to be globally consistent so that the graph remains properly colored at each point, and we require that adjacent nodes do not change their colors simultaneously.
We are interested in the following questions: How many communication rounds are needed (in the deterministic LOCAL model of distributed computing) to find a recoloring schedule? What is the length of the recoloring schedule? And how does the picture change if we can use extra colors to make recoloring easier?
The main contributions of this work are related to distributed recoloring with one extra color in the following graph classes: trees, 3-regular graphs, and toroidal grids.

Marthe Bonamy, Paul Ouvrard, Mikaël Rabie, Jukka Suomela, and Jara Uitto. Distributed Recoloring. In 32nd International Symposium on Distributed Computing (DISC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 121, pp. 12:1-12:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{bonamy_et_al:LIPIcs.DISC.2018.12, author = {Bonamy, Marthe and Ouvrard, Paul and Rabie, Mika\"{e}l and Suomela, Jukka and Uitto, Jara}, title = {{Distributed Recoloring}}, booktitle = {32nd International Symposium on Distributed Computing (DISC 2018)}, pages = {12:1--12:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-092-7}, ISSN = {1868-8969}, year = {2018}, volume = {121}, editor = {Schmid, Ulrich and Widder, Josef}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2018.12}, URN = {urn:nbn:de:0030-drops-98012}, doi = {10.4230/LIPIcs.DISC.2018.12}, annote = {Keywords: Distributed Systems, Graph Algorithms, Local Computations} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail