Search Results

Documents authored by Perk, Michael


Document
Exact Algorithms for Minimum Dilation Triangulation

Authors: Sándor P. Fekete, Phillip Keldenich, and Michael Perk

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
We provide a spectrum of new theoretical insights and practical results for finding a Minimum Dilation Triangulation (MDT), a natural geometric optimization problem of considerable previous attention: Given a set P of n points in the plane, find a triangulation T, such that a shortest Euclidean path in T between any pair of points increases by the smallest possible factor compared to their straight-line distance. No polynomial-time algorithm is known for the problem; moreover, evaluating the objective function involves computing the sum of (possibly many) square roots. On the other hand, the problem is not known to be NP-hard. (1) We provide practically robust methods and implementations for computing an MDT for benchmark sets with up to 30,000 points in reasonable time on commodity hardware, based on new geometric insights into the structure of optimal edge sets. Previous methods only achieved results for up to 200 points, so we extend the range of optimally solvable instances by a factor of 150. (2) We develop scalable techniques for accurately evaluating many shortest-path queries that arise as large-scale sums of square roots, allowing us to certify exact optimal solutions, with previous work relying on (possibly inaccurate) floating-point computations. (3) We resolve an open problem by establishing a lower bound of 1.44116 on the dilation of the regular 84-gon (and thus for arbitrary point sets), improving the previous worst-case lower bound of 1.4308 and greatly reducing the remaining gap to the upper bound of 1.4482 from the literature. In the process, we provide optimal solutions for regular n-gons up to n = 100.

Cite as

Sándor P. Fekete, Phillip Keldenich, and Michael Perk. Exact Algorithms for Minimum Dilation Triangulation. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 48:1-48:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{fekete_et_al:LIPIcs.SoCG.2025.48,
  author =	{Fekete, S\'{a}ndor P. and Keldenich, Phillip and Perk, Michael},
  title =	{{Exact Algorithms for Minimum Dilation Triangulation}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{48:1--48:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.48},
  URN =		{urn:nbn:de:0030-drops-232006},
  doi =		{10.4230/LIPIcs.SoCG.2025.48},
  annote =	{Keywords: dilation, minimum dilation triangulation, exact algorithms, algorithm engineering, experimental evaluation}
}
Document
The Lawn Mowing Problem: From Algebra to Algorithms

Authors: Sándor P. Fekete, Dominik Krupke, Michael Perk, Christian Rieck, and Christian Scheffer

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
For a given polygonal region P, the Lawn Mowing Problem (LMP) asks for a shortest tour T that gets within Euclidean distance 1/2 of every point in P; this is equivalent to computing a shortest tour for a unit-diameter cutter C that covers all of P. As a generalization of the Traveling Salesman Problem, the LMP is NP-hard; unlike the discrete TSP, however, the LMP has defied efforts to achieve exact solutions, due to its combination of combinatorial complexity with continuous geometry. We provide a number of new contributions that provide insights into the involved difficulties, as well as positive results that enable both theoretical and practical progress. (1) We show that the LMP is algebraically hard: it is not solvable by radicals over the field of rationals, even for the simple case in which P is a 2×2 square. This implies that it is impossible to compute exact optimal solutions under models of computation that rely on elementary arithmetic operations and the extraction of kth roots, and explains the perceived practical difficulty. (2) We exploit this algebraic analysis for the natural class of polygons with axis-parallel edges and integer vertices (i.e., polyominoes), highlighting the relevance of turn-cost minimization for Lawn Mowing tours, and leading to a general construction method for feasible tours. (3) We show that this construction method achieves theoretical worst-case guarantees that improve previous approximation factors for polyominoes. (4) We demonstrate the practical usefulness beyond polyominoes by performing an extensive practical study on a spectrum of more general benchmark polygons: We obtain solutions that are better than the previous best values by Fekete et al., for instance sizes up to 20 times larger.

Cite as

Sándor P. Fekete, Dominik Krupke, Michael Perk, Christian Rieck, and Christian Scheffer. The Lawn Mowing Problem: From Algebra to Algorithms. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 45:1-45:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{fekete_et_al:LIPIcs.ESA.2023.45,
  author =	{Fekete, S\'{a}ndor P. and Krupke, Dominik and Perk, Michael and Rieck, Christian and Scheffer, Christian},
  title =	{{The Lawn Mowing Problem: From Algebra to Algorithms}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{45:1--45:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.45},
  URN =		{urn:nbn:de:0030-drops-186985},
  doi =		{10.4230/LIPIcs.ESA.2023.45},
  annote =	{Keywords: Geometric optimization, covering problems, tour problems, lawn mowing, algebraic hardness, approximation algorithms, algorithm engineering}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail