Search Results

Documents authored by Randolph, Tim


Document
RANDOM
Subset Sum in Time 2^{n/2} / poly(n)

Authors: Xi Chen, Yaonan Jin, Tim Randolph, and Rocco A. Servedio

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
A major goal in the area of exact exponential algorithms is to give an algorithm for the (worst-case) n-input Subset Sum problem that runs in time 2^{(1/2 - c)n} for some constant c > 0. In this paper we give a Subset Sum algorithm with worst-case running time O(2^{n/2} ⋅ n^{-γ}) for a constant γ > 0.5023 in standard word RAM or circuit RAM models. To the best of our knowledge, this is the first improvement on the classical "meet-in-the-middle" algorithm for worst-case Subset Sum, due to Horowitz and Sahni, which can be implemented in time O(2^{n/2}) in these memory models [Horowitz and Sahni, 1974]. Our algorithm combines a number of different techniques, including the "representation method" introduced by Howgrave-Graham and Joux [Howgrave-Graham and Joux, 2010] and subsequent adaptations of the method in Austrin, Kaski, Koivisto, and Nederlof [Austrin et al., 2016], and Nederlof and Węgrzycki [Jesper Nederlof and Karol Wegrzycki, 2021], and "bit-packing" techniques used in the work of Baran, Demaine, and Pǎtraşcu [Baran et al., 2005] on subquadratic algorithms for 3SUM.

Cite as

Xi Chen, Yaonan Jin, Tim Randolph, and Rocco A. Servedio. Subset Sum in Time 2^{n/2} / poly(n). In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 39:1-39:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.APPROX/RANDOM.2023.39,
  author =	{Chen, Xi and Jin, Yaonan and Randolph, Tim and Servedio, Rocco A.},
  title =	{{Subset Sum in Time 2^\{n/2\} / poly(n)}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{39:1--39:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.39},
  URN =		{urn:nbn:de:0030-drops-188641},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.39},
  annote =	{Keywords: Exact algorithms, subset sum, log shaving}
}
Document
A Note on the Complexity of Private Simultaneous Messages with Many Parties

Authors: Marshall Ball and Tim Randolph

Published in: LIPIcs, Volume 230, 3rd Conference on Information-Theoretic Cryptography (ITC 2022)


Abstract
For k = ω(log n), we prove a Ω(k²n / log(kn)) lower bound on private simultaneous messages (PSM) with k parties who receive n-bit inputs. This extends the Ω(n) lower bound due to Appelbaum, Holenstein, Mishra and Shayevitz [Journal of Cryptology, 2019] to the many-party (k = ω(log n)) setting. It is the first PSM lower bound that increases quadratically with the number of parties, and moreover the first unconditional, explicit bound that grows with both k and n. This note extends the work of Ball, Holmgren, Ishai, Liu, and Malkin [ITCS 2020], who prove communication complexity lower bounds on decomposable randomized encodings (DREs), which correspond to the special case of k-party PSMs with n = 1. To give a concise and readable introduction to the method, we focus our presentation on perfect PSM schemes.

Cite as

Marshall Ball and Tim Randolph. A Note on the Complexity of Private Simultaneous Messages with Many Parties. In 3rd Conference on Information-Theoretic Cryptography (ITC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 230, pp. 7:1-7:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{ball_et_al:LIPIcs.ITC.2022.7,
  author =	{Ball, Marshall and Randolph, Tim},
  title =	{{A Note on the Complexity of Private Simultaneous Messages with Many Parties}},
  booktitle =	{3rd Conference on Information-Theoretic Cryptography (ITC 2022)},
  pages =	{7:1--7:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-238-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{230},
  editor =	{Dachman-Soled, Dana},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2022.7},
  URN =		{urn:nbn:de:0030-drops-164855},
  doi =		{10.4230/LIPIcs.ITC.2022.7},
  annote =	{Keywords: Secure computation, Private Simultaneous Messages}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail