Search Results

Documents authored by Straszak, Damian


Document
Ranking with Fairness Constraints

Authors: L. Elisa Celis, Damian Straszak, and Nisheeth K. Vishnoi

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
Ranking algorithms are deployed widely to order a set of items in applications such as search engines, news feeds, and recommendation systems. Recent studies, however, have shown that, left unchecked, the output of ranking algorithms can result in decreased diversity in the type of content presented, promote stereotypes, and polarize opinions. In order to address such issues, we study the following variant of the traditional ranking problem when, in addition, there are fairness or diversity constraints. Given a collection of items along with 1) the value of placing an item in a particular position in the ranking, 2) the collection of sensitive attributes (such as gender, race, political opinion) of each item and 3) a collection of fairness constraints that, for each k, bound the number of items with each attribute that are allowed to appear in the top k positions of the ranking, the goal is to output a ranking that maximizes the value with respect to the original rank quality metric while respecting the constraints. This problem encapsulates various well-studied problems related to bipartite and hypergraph matching as special cases and turns out to be hard to approximate even with simple constraints. Our main technical contributions are fast exact and approximation algorithms along with complementary hardness results that, together, come close to settling the approximability of this constrained ranking maximization problem. Unlike prior work on the approximability of constrained matching problems, our algorithm runs in linear time, even when the number of constraints is (polynomially) large, its approximation ratio does not depend on the number of constraints, and it produces solutions with small constraint violations. Our results rely on insights about the constrained matching problem when the objective function satisfies certain properties that appear in common ranking metrics such as discounted cumulative gain (DCG), Spearman's rho or Bradley-Terry, along with the nested structure of fairness constraints.

Cite as

L. Elisa Celis, Damian Straszak, and Nisheeth K. Vishnoi. Ranking with Fairness Constraints. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 28:1-28:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{celis_et_al:LIPIcs.ICALP.2018.28,
  author =	{Celis, L. Elisa and Straszak, Damian and Vishnoi, Nisheeth K.},
  title =	{{Ranking with Fairness Constraints}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{28:1--28:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.28},
  URN =		{urn:nbn:de:0030-drops-90329},
  doi =		{10.4230/LIPIcs.ICALP.2018.28},
  annote =	{Keywords: Ranking, Fairness, Optimization, Matching, Approximation Algorithms}
}
Document
On the Complexity of Constrained Determinantal Point Processes

Authors: L. Elisa Celis, Amit Deshpande, Tarun Kathuria, Damian Straszak, and Nisheeth K. Vishnoi

Published in: LIPIcs, Volume 81, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)


Abstract
Determinantal Point Processes (DPPs) are probabilistic models that arise in quantum physics and random matrix theory and have recently found numerous applications in theoretical computer science and machine learning. DPPs define probability distributions over subsets of a given ground set, they exhibit interesting properties such as negative correlation, and, unlike other models of negative correlation such as Markov random fields, have efficient algorithms for sampling. When applied to kernel methods in machine learning, DPPs favor subsets of the given data with more diverse features. However, many real-world applications require efficient algorithms to sample from DPPs with additional constraints on the sampled subset, e.g., partition or matroid constraints that are important from the viewpoint of ensuring priors, resource or fairness constraints on the sampled subset. Whether one can efficiently sample from DPPs in such constrained settings is an important problem that was first raised in a survey of DPPs for machine learning by Kulesza and Taskar and studied in some recent works. The main contribution of this paper is the first resolution of the complexity of sampling from DPPs with constraints. On the one hand, we give exact efficient algorithms for sampling from constrained DPPs when the description of the constraints is in unary; this includes special cases of practical importance such as a small number of partition, knapsack or budget constraints. On the other hand, we prove that when the constraints are specified in binary, this problem is #P-hard via a reduction from the problem of computing mixed discriminants; implying that it may be unlikely that there is an FPRAS. Technically, our algorithmic result benefits from viewing the constrained sampling problem via the lens of polynomials and we obtain our complexity results by providing an equivalence between computing mixed discriminants and sampling from partition constrained DPPs. As a consequence, we obtain a few corollaries of independent interest: 1) An algorithm to count, sample (and, hence, optimize) over the base polytope of regular matroids when there are additional (succinct) budget constraints and, 2) An algorithm to evaluate and compute mixed characteristic polynomials, that played a central role in the resolution of the Kadison-Singer problem, for certain special cases.

Cite as

L. Elisa Celis, Amit Deshpande, Tarun Kathuria, Damian Straszak, and Nisheeth K. Vishnoi. On the Complexity of Constrained Determinantal Point Processes. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 81, pp. 36:1-36:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{celis_et_al:LIPIcs.APPROX-RANDOM.2017.36,
  author =	{Celis, L. Elisa and Deshpande, Amit and Kathuria, Tarun and Straszak, Damian and Vishnoi, Nisheeth K.},
  title =	{{On the Complexity of Constrained Determinantal Point Processes}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)},
  pages =	{36:1--36:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-044-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{81},
  editor =	{Jansen, Klaus and Rolim, Jos\'{e} D. P. and Williamson, David P. and Vempala, Santosh S.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2017.36},
  URN =		{urn:nbn:de:0030-drops-75851},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2017.36},
  annote =	{Keywords: determinantal point processes, constraints, matroids, sampling and counting, polynomials, mixed discriminant}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail