Search Results

Documents authored by Sturm, Marc


Document
A machine learning approach for prediction of DNA and peptide HPLC retention times

Authors: Marc Sturm, Sascha Quinten, Christian G. Huber, and Oliver Kohlbacher

Published in: Dagstuhl Seminar Proceedings, Volume 5471, Computational Proteomics (2006)


Abstract
High performance liquid chromatography (HPLC) has become one of the most efficient methods for the separation of biomolecules. It is an important tool in DNA purification after synthesis as well as DNA quantification. In both cases the separability of different oligonucleotides is essential. The prediction of oligonucleotide retention times prior to the experiment may detect superimposed nucleotides and thereby help to avoid futile experiments. In 2002 Gilar et al. proposed a simple mathematical model for the prediction of DNA retention times, that reliably works at high temperatures only (at least 70°C). To cover a wider temperature rang we incorporated DNA secondary structure information in addition to base composition and length. We used support vector regression (SVR) for the model generation and retention time prediction. A similar problem arises in shotgun proteomics. Here HPLC coupled to a mass spectrometer (MS) is used to analyze complex peptide mixtures (thousands of peptides). Predicting peptide retention times can be used to validate tandem-MS peptide identifications made by search engines like SEQUEST. Recently several methods including multiple linear regression and artificial neural networks were proposed, but SVR has not been used so far.

Cite as

Marc Sturm, Sascha Quinten, Christian G. Huber, and Oliver Kohlbacher. A machine learning approach for prediction of DNA and peptide HPLC retention times. In Computational Proteomics. Dagstuhl Seminar Proceedings, Volume 5471, pp. 1-5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{sturm_et_al:DagSemProc.05471.3,
  author =	{Sturm, Marc and Quinten, Sascha and Huber, Christian G. and Kohlbacher, Oliver},
  title =	{{A machine learning approach for prediction of DNA and peptide HPLC retention times}},
  booktitle =	{Computational Proteomics},
  pages =	{1--5},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{5471},
  editor =	{Christian G. Huber and Oliver Kohlbacher and Knut Reinert},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.05471.3},
  URN =		{urn:nbn:de:0030-drops-5484},
  doi =		{10.4230/DagSemProc.05471.3},
  annote =	{Keywords: High performance liquid chromatography, mass spectrometry, retention time, prediction, peptide, DNA, support vector regression}
}
Document
OpenMS - A Framework for Quantitative HPLC/MS-Based Proteomics

Authors: Knut Reinert, Oliver Kohlbacher, Clemens Gröpl, Eva Lange, Ole Schulz-Trieglaff, Marc Sturm, and Nico Pfeifer

Published in: Dagstuhl Seminar Proceedings, Volume 5471, Computational Proteomics (2006)


Abstract
In the talk we describe the freely available software library OpenMS which is currently under development at the Freie Universität Berlin and the Eberhardt-Karls Universität Tübingen. We give an overview of the goals and problems in differential proteomics with HPLC and then describe in detail the implemented approaches for signal processing, peak detection and data reduction currently employed in OpenMS. After this we describe methods to identify the differential expression of peptides and propose strategies to avoid MS/MS identification of peptides of interest. We give an overview of the capabilities and design principles of OpenMS and demonstrate its ease of use. Finally we describe projects in which OpenMS will be or was already deployed and thereby demonstrate its versatility.

Cite as

Knut Reinert, Oliver Kohlbacher, Clemens Gröpl, Eva Lange, Ole Schulz-Trieglaff, Marc Sturm, and Nico Pfeifer. OpenMS - A Framework for Quantitative HPLC/MS-Based Proteomics. In Computational Proteomics. Dagstuhl Seminar Proceedings, Volume 5471, pp. 1-7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{reinert_et_al:DagSemProc.05471.13,
  author =	{Reinert, Knut and Kohlbacher, Oliver and Gr\"{o}pl, Clemens and Lange, Eva and Schulz-Trieglaff, Ole and Sturm, Marc and Pfeifer, Nico},
  title =	{{OpenMS - A Framework for Quantitative HPLC/MS-Based Proteomics}},
  booktitle =	{Computational Proteomics},
  pages =	{1--7},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{5471},
  editor =	{Christian G. Huber and Oliver Kohlbacher and Knut Reinert},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.05471.13},
  URN =		{urn:nbn:de:0030-drops-5463},
  doi =		{10.4230/DagSemProc.05471.13},
  annote =	{Keywords: Proteomics, C++, Differential expression}
}