Document

RANDOM

**Published in:** LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)

The sign-rank of a matrix A with ±1 entries is the smallest rank of a real matrix with the same sign pattern as A. To the best of our knowledge, there are only three known methods for proving lower bounds on the sign-rank of explicit matrices: (i) Sign-rank is at least the VC-dimension; (ii) Forster’s method, which states that sign-rank is at least the inverse of the largest possible average margin among the representations of the matrix by points and half-spaces; (iii) Sign-rank is at least a logarithmic function of the density of the largest monochromatic rectangle.
We prove several results regarding the limitations of these methods.
- We prove that, qualitatively, the monochromatic rectangle density is the strongest of these three lower bounds. If it fails to provide a super-constant lower bound for the sign-rank of a matrix, then the other two methods will fail as well.
- We show that there exist n × n matrices with sign-rank n^Ω(1) for which none of these methods can provide a super-constant lower bound.
- We show that sign-rank is at most an exponential function of the deterministic communication complexity with access to an equality oracle. We combine this result with Green and Sanders' quantitative version of Cohen’s idempotent theorem to show that for a large class of sign matrices (e.g., xor-lifts), sign-rank is at most an exponential function of the γ₂ norm of the matrix. We conjecture that this holds for all sign matrices.
- Towards answering a question of Linial, Mendelson, Schechtman, and Shraibman regarding the relation between sign-rank and discrepancy, we conjecture that sign-ranks of the ±1 adjacency matrices of hypercube graphs can be arbitrarily large. We prove that none of the three lower bound techniques can resolve this conjecture in the affirmative.

Hamed Hatami, Pooya Hatami, William Pires, Ran Tao, and Rosie Zhao. Lower Bound Methods for Sign-Rank and Their Limitations. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 22:1-22:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{hatami_et_al:LIPIcs.APPROX/RANDOM.2022.22, author = {Hatami, Hamed and Hatami, Pooya and Pires, William and Tao, Ran and Zhao, Rosie}, title = {{Lower Bound Methods for Sign-Rank and Their Limitations}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)}, pages = {22:1--22:24}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-249-5}, ISSN = {1868-8969}, year = {2022}, volume = {245}, editor = {Chakrabarti, Amit and Swamy, Chaitanya}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.22}, URN = {urn:nbn:de:0030-drops-171445}, doi = {10.4230/LIPIcs.APPROX/RANDOM.2022.22}, annote = {Keywords: Average Margin, Communication complexity, margin complexity, monochromatic rectangle, Sign-rank, Unbounded-error communication complexity, VC-dimension} }

Document

**Published in:** LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)

We show EOPL = PLS ∩ PPAD. Here the class EOPL consists of all total search problems that reduce to the End-of-Potential-Line problem, which was introduced in the works by Hubáček and Yogev (SICOMP 2020) and Fearnley et al. (JCSS 2020). In particular, our result yields a new simpler proof of the breakthrough collapse CLS = PLS ∩ PPAD by Fearnley et al. (STOC 2021). We also prove a companion result SOPL = PLS ∩ PPADS, where SOPL is the class associated with the Sink-of-Potential-Line problem.

Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires, Robert Robere, and Ran Tao. Further Collapses in TFNP. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 33:1-33:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{goos_et_al:LIPIcs.CCC.2022.33, author = {G\"{o}\"{o}s, Mika and Hollender, Alexandros and Jain, Siddhartha and Maystre, Gilbert and Pires, William and Robere, Robert and Tao, Ran}, title = {{Further Collapses in TFNP}}, booktitle = {37th Computational Complexity Conference (CCC 2022)}, pages = {33:1--33:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-241-9}, ISSN = {1868-8969}, year = {2022}, volume = {234}, editor = {Lovett, Shachar}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.33}, URN = {urn:nbn:de:0030-drops-165954}, doi = {10.4230/LIPIcs.CCC.2022.33}, annote = {Keywords: TFNP, PPAD, PLS, EOPL} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail