Search Results

Documents authored by Vadiee, Farhad


Document
State Canonization and Early Pruning in Width-Based Automated Theorem Proving

Authors: Mateus de Oliveira Oliveira and Farhad Vadiee

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Width-based automated theorem proving is a framework where counter-examples for graph theoretic conjectures are searched width-wise relative to some graph width measure, such as treewidth or pathwidth. In a recent work it has been shown that dynamic programming algorithms operating on tree decompositions can be combined together with the purpose of width-based theorem proving. This approach can be used to show that several long-standing conjectures in graph theory can be tested in time 2^{2^{k^{O(1)}}} on the class of graphs of treewidth at most k. In this work, we give the first steps towards evaluating the viability of this framework from a practical standpoint. At the same time, we advance the framework in two directions. First, we introduce a state-canonization technique that significantly reduces the number of states evaluated during the search for a counter-example of the conjecture. Second, we introduce an early-pruning technique that can be applied in the study of conjectures of the form ℙ₁ → ℙ₂, for graph properties ℙ₁ and ℙ₂, where ℙ₁ is a property closed under subgraphs. As a concrete application, we use our framework in the study of graph theoretic conjectures related to coloring triangle free graphs. In particular, our algorithm is able to show that Reed’s conjecture for triangle free graphs is valid on the class of graphs of pathwidth at most 5, and on graphs of treewidth at most 3. Perhaps more interestingly, our algorithm is able to construct in a completely automated way counter-examples for non-valid strengthenings of Reed’s conjecture. These are the first results showing that width-based automated theorem proving is a promising avenue in the study of graph-theoretic conjectures.

Cite as

Mateus de Oliveira Oliveira and Farhad Vadiee. State Canonization and Early Pruning in Width-Based Automated Theorem Proving. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 33:1-33:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{deoliveiraoliveira_et_al:LIPIcs.FSCD.2024.33,
  author =	{de Oliveira Oliveira, Mateus and Vadiee, Farhad},
  title =	{{State Canonization and Early Pruning in Width-Based Automated Theorem Proving}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{33:1--33:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.33},
  URN =		{urn:nbn:de:0030-drops-203622},
  doi =		{10.4230/LIPIcs.FSCD.2024.33},
  annote =	{Keywords: Width-Based Automated Theorem Proving, Dynamic Programming, Parameterized Complexity}
}
Document
PACE Solver Description
PACE Solver Description: Zygosity

Authors: Emmanuel Arrighi, Pål Grønås Drange, Kenneth Langedal, Farhad Vadiee, Martin Vatshelle, and Petra Wolf

Published in: LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)


Abstract
The graph parameter twin-width was recently introduced by Bonnet et al. Twin-width is a parameter that measures a graph’s similarity to a cograph, which is a graph that can be reduced to a single vertex by repeatedly contracting twins. This brief description introduces Zygosity, a heuristic for computing a low-width contraction sequence that achieved second place in the 2023 edition of Parameterized Algorithms and Computational Experiments Challenge (PACE). Zygosity starts by repeatedly contracting twins. Then, any attached trees are contracted down to a single pendant vertex. The remaining graph is then contracted using a randomized greedy algorithm.

Cite as

Emmanuel Arrighi, Pål Grønås Drange, Kenneth Langedal, Farhad Vadiee, Martin Vatshelle, and Petra Wolf. PACE Solver Description: Zygosity. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 39:1-39:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{arrighi_et_al:LIPIcs.IPEC.2023.39,
  author =	{Arrighi, Emmanuel and Drange, P\r{a}l Gr{\o}n\r{a}s and Langedal, Kenneth and Vadiee, Farhad and Vatshelle, Martin and Wolf, Petra},
  title =	{{PACE Solver Description: Zygosity}},
  booktitle =	{18th International Symposium on Parameterized and Exact Computation (IPEC 2023)},
  pages =	{39:1--39:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-305-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{285},
  editor =	{Misra, Neeldhara and Wahlstr\"{o}m, Magnus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.39},
  URN =		{urn:nbn:de:0030-drops-194583},
  doi =		{10.4230/LIPIcs.IPEC.2023.39},
  annote =	{Keywords: Twin-width, randomized greedy algorithm}
}