Search Results

Documents authored by Wang, Ruosong


Document
Classical Algorithms from Quantum and Arthur-Merlin Communication Protocols

Authors: Lijie Chen and Ruosong Wang

Published in: LIPIcs, Volume 124, 10th Innovations in Theoretical Computer Science Conference (ITCS 2019)


Abstract
In recent years, the polynomial method from circuit complexity has been applied to several fundamental problems and obtains the state-of-the-art running times (e.g., R. Williams's n^3 / 2^{Omega(sqrt{log n})} time algorithm for APSP). As observed in [Alman and Williams, STOC 2017], almost all applications of the polynomial method in algorithm design ultimately rely on certain (probabilistic) low-rank decompositions of the computation matrices corresponding to key subroutines. They suggest that making use of low-rank decompositions directly could lead to more powerful algorithms, as the polynomial method is just one way to derive such a decomposition. Inspired by their observation, in this paper, we study another way of systematically constructing low-rank decompositions of matrices which could be used by algorithms - communication protocols. Since their introduction, it is known that various types of communication protocols lead to certain low-rank decompositions (e.g., P protocols/rank, BQP protocols/approximate rank). These are usually interpreted as approaches for proving communication lower bounds, while in this work we explore the other direction. We have the following two generic algorithmic applications of communication protocols: - Quantum Communication Protocols and Deterministic Approximate Counting. Our first connection is that a fast BQP communication protocol for a function f implies a fast deterministic additive approximate counting algorithm for a related pair counting problem. Applying known BQP communication protocols, we get fast deterministic additive approximate counting algorithms for Count-OV (#OV), Sparse Count-OV and Formula of SYM circuits. In particular, our approximate counting algorithm for #OV runs in near-linear time for all dimensions d = o(log^2 n). Previously, even no truly-subquadratic time algorithm was known for d = omega(log n). - Arthur-Merlin Communication Protocols and Faster Satisfying-Pair Algorithms. Our second connection is that a fast AM^{cc} protocol for a function f implies a faster-than-bruteforce algorithm for f-Satisfying-Pair. Using the classical Goldwasser-Sisper AM protocols for approximating set size, we obtain a new algorithm for approximate Max-IP_{n,c log n} in time n^{2 - 1/O(log c)}, matching the state-of-the-art algorithms in [Chen, CCC 2018]. We also apply our second connection to shed some light on long-standing open problems in communication complexity. We show that if the Longest Common Subsequence (LCS) problem admits a fast (computationally efficient) AM^{cc} protocol (polylog(n) complexity), then polynomial-size Formula-SAT admits a 2^{n - n^{1-delta}} time algorithm for any constant delta > 0, which is conjectured to be unlikely by a recent work [Abboud and Bringmann, ICALP 2018]. The same holds even for a fast (computationally efficient) PH^{cc} protocol.

Cite as

Lijie Chen and Ruosong Wang. Classical Algorithms from Quantum and Arthur-Merlin Communication Protocols. In 10th Innovations in Theoretical Computer Science Conference (ITCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 124, pp. 23:1-23:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ITCS.2019.23,
  author =	{Chen, Lijie and Wang, Ruosong},
  title =	{{Classical Algorithms from Quantum and Arthur-Merlin Communication Protocols}},
  booktitle =	{10th Innovations in Theoretical Computer Science Conference (ITCS 2019)},
  pages =	{23:1--23:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-095-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{124},
  editor =	{Blum, Avrim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2019.23},
  URN =		{urn:nbn:de:0030-drops-101162},
  doi =		{10.4230/LIPIcs.ITCS.2019.23},
  annote =	{Keywords: Quantum communication protocols, Arthur-Merlin communication protocols, approximate counting, approximate rank}
}
Document
An Improved Algorithm for Incremental DFS Tree in Undirected Graphs

Authors: Lijie Chen, Ran Duan, Ruosong Wang, Hanrui Zhang, and Tianyi Zhang

Published in: LIPIcs, Volume 101, 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018)


Abstract
Depth first search (DFS) tree is one of the most well-known data structures for designing efficient graph algorithms. Given an undirected graph G=(V,E) with n vertices and m edges, the textbook algorithm takes O(n+m) time to construct a DFS tree. In this paper, we study the problem of maintaining a DFS tree when the graph is undergoing incremental updates. Formally, we show: Given an arbitrary online sequence of edge or vertex insertions, there is an algorithm that reports a DFS tree in O(n) worst case time per operation, and requires O (min {m log n, n^2}) preprocessing time. Our result improves the previous O(n log^3 n) worst case update time algorithm by Baswana et al. [Baswana et al., 2016] and the O(n log n) time by Nakamura and Sadakane [Nakamura and Sadakane, 2017], and matches the trivial Omega(n) lower bound when it is required to explicitly output a DFS tree. Our result builds on the framework introduced in the breakthrough work by Baswana et al. [Baswana et al., 2016], together with a novel use of a tree-partition lemma by Duan and Zhang [Duan and Zhang, 2016], and the celebrated fractional cascading technique by Chazelle and Guibas [Chazelle and Guibas, 1986a; Chazelle and Guibas, 1986b].

Cite as

Lijie Chen, Ran Duan, Ruosong Wang, Hanrui Zhang, and Tianyi Zhang. An Improved Algorithm for Incremental DFS Tree in Undirected Graphs. In 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 101, pp. 16:1-16:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.SWAT.2018.16,
  author =	{Chen, Lijie and Duan, Ran and Wang, Ruosong and Zhang, Hanrui and Zhang, Tianyi},
  title =	{{An Improved Algorithm for Incremental DFS Tree in Undirected Graphs}},
  booktitle =	{16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018)},
  pages =	{16:1--16:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-068-2},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{101},
  editor =	{Eppstein, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2018.16},
  URN =		{urn:nbn:de:0030-drops-88427},
  doi =		{10.4230/LIPIcs.SWAT.2018.16},
  annote =	{Keywords: DFS tree, fractional cascading, fully dynamic algorithm}
}
Document
k-Regret Minimizing Set: Efficient Algorithms and Hardness

Authors: Wei Cao, Jian Li, Haitao Wang, Kangning Wang, Ruosong Wang, Raymond Chi-Wing Wong, and Wei Zhan

Published in: LIPIcs, Volume 68, 20th International Conference on Database Theory (ICDT 2017)


Abstract
We study the k-regret minimizing query (k-RMS), which is a useful operator for supporting multi-criteria decision-making. Given two integers k and r, a k-RMS returns r tuples from the database which minimize the k-regret ratio, defined as one minus the worst ratio between the k-th maximum utility score among all tuples in the database and the maximum utility score of the r tuples returned. A solution set contains only r tuples, enjoying the benefits of both top-k queries and skyline queries. Proposed in 2012, the query has been studied extensively in recent years. In this paper, we advance the theory and the practice of k-RMS in the following aspects. First, we develop efficient algorithms for k-RMS (and its decision version) when the dimensionality is 2. The running time of our algorithms outperforms those of previous ones. Second, we show that k-RMS is NP-hard even when the dimensionality is 3. This provides a complete characterization of the complexity of k-RMS, and answers an open question in previous studies. In addition, we present approximation algorithms for the problem when the dimensionality is 3 or larger.

Cite as

Wei Cao, Jian Li, Haitao Wang, Kangning Wang, Ruosong Wang, Raymond Chi-Wing Wong, and Wei Zhan. k-Regret Minimizing Set: Efficient Algorithms and Hardness. In 20th International Conference on Database Theory (ICDT 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 68, pp. 11:1-11:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{cao_et_al:LIPIcs.ICDT.2017.11,
  author =	{Cao, Wei and Li, Jian and Wang, Haitao and Wang, Kangning and Wang, Ruosong and Chi-Wing Wong, Raymond and Zhan, Wei},
  title =	{{k-Regret Minimizing Set: Efficient Algorithms and Hardness}},
  booktitle =	{20th International Conference on Database Theory (ICDT 2017)},
  pages =	{11:1--11:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-024-8},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{68},
  editor =	{Benedikt, Michael and Orsi, Giorgio},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2017.11},
  URN =		{urn:nbn:de:0030-drops-70569},
  doi =		{10.4230/LIPIcs.ICDT.2017.11},
  annote =	{Keywords: multi-criteria decision-making, regret minimizing set, top-k query}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail