Search Results

Documents authored by Ziccardi, Isabella


Document
Bond Percolation in Small-World Graphs with Power-Law Distribution

Authors: Luca Becchetti, Andrea Clementi, Francesco Pasquale, Luca Trevisan, and Isabella Ziccardi

Published in: LIPIcs, Volume 257, 2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023)


Abstract
Full-bond percolation with parameter p is the process in which, given a graph, for every edge independently, we keep the edge with probability p and delete it with probability 1-p. Bond percolation is studied in parallel computing and network science to understand the resilience of distributed systems to random link failure and the spread of information in networks through unreliable links. Moreover, the full-bond percolation is equivalent to the Reed-Frost process, a network version of SIR epidemic spreading. We consider one-dimensional power-law small-world graphs with parameter α obtained as the union of a cycle with additional long-range random edges: each pair of nodes {u,v} at distance L on the cycle is connected by a long-range edge {u,v}, with probability proportional to 1/L^α. Our analysis determines three phases for the percolation subgraph G_p of the small-world graph, depending on the value of α. - If α < 1, there is a p < 1 such that, with high probability, there are Ω(n) nodes that are reachable in G_p from one another in 𝒪(log n) hops; - If 1 < α < 2, there is a p < 1 such that, with high probability, there are Ω(n) nodes that are reachable in G_p from one another in log^{𝒪(1)}(n) hops; - If α > 2, for every p < 1, with high probability all connected components of G_p have size 𝒪(log n).

Cite as

Luca Becchetti, Andrea Clementi, Francesco Pasquale, Luca Trevisan, and Isabella Ziccardi. Bond Percolation in Small-World Graphs with Power-Law Distribution. In 2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 257, pp. 3:1-3:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{becchetti_et_al:LIPIcs.SAND.2023.3,
  author =	{Becchetti, Luca and Clementi, Andrea and Pasquale, Francesco and Trevisan, Luca and Ziccardi, Isabella},
  title =	{{Bond Percolation in Small-World Graphs with Power-Law Distribution}},
  booktitle =	{2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023)},
  pages =	{3:1--3:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-275-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{257},
  editor =	{Doty, David and Spirakis, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAND.2023.3},
  URN =		{urn:nbn:de:0030-drops-179392},
  doi =		{10.4230/LIPIcs.SAND.2023.3},
  annote =	{Keywords: Information spreading, gossiping, epidemics, fault-tolerance, network self-organization and formation, complex systems, social and transportation networks}
}
Document
Resilient Level Ancestor, Bottleneck, and Lowest Common Ancestor Queries in Dynamic Trees

Authors: Luciano Gualà, Stefano Leucci, and Isabella Ziccardi

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
We study the problem of designing a resilient data structure maintaining a tree under the Faulty-RAM model [Finocchi and Italiano, STOC'04] in which up to δ memory words can be corrupted by an adversary. Our data structure stores a rooted dynamic tree that can be updated via the addition of new leaves, requires linear size, and supports resilient (weighted) level ancestor queries, lowest common ancestor queries, and bottleneck vertex queries in O(δ) worst-case time per operation.

Cite as

Luciano Gualà, Stefano Leucci, and Isabella Ziccardi. Resilient Level Ancestor, Bottleneck, and Lowest Common Ancestor Queries in Dynamic Trees. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 66:1-66:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{guala_et_al:LIPIcs.ISAAC.2021.66,
  author =	{Gual\`{a}, Luciano and Leucci, Stefano and Ziccardi, Isabella},
  title =	{{Resilient Level Ancestor, Bottleneck, and Lowest Common Ancestor Queries in Dynamic Trees}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{66:1--66:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.66},
  URN =		{urn:nbn:de:0030-drops-154998},
  doi =		{10.4230/LIPIcs.ISAAC.2021.66},
  annote =	{Keywords: level ancestor queries, lowest common ancestor queries, bottleneck vertex queries, resilient data structures, faulty-RAM model, dynamic trees}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail