Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)
Boris Klemz and Marie Diana Sieper. Constrained Level Planarity Is FPT with Respect to the Vertex Cover Number. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 99:1-99:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{klemz_et_al:LIPIcs.ICALP.2024.99, author = {Klemz, Boris and Sieper, Marie Diana}, title = {{Constrained Level Planarity Is FPT with Respect to the Vertex Cover Number}}, booktitle = {51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)}, pages = {99:1--99:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-322-5}, ISSN = {1868-8969}, year = {2024}, volume = {297}, editor = {Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.99}, URN = {urn:nbn:de:0030-drops-202428}, doi = {10.4230/LIPIcs.ICALP.2024.99}, annote = {Keywords: Parameterized Complexity, Graph Drawing, Planar Poset Diagram, Level Planarity, Constrained Level Planarity, Vertex Cover, FPT, Computational Geometry} }
Published in: LIPIcs, Volume 159, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)
Andrei Asinowski and Cyril Banderier. On Lattice Paths with Marked Patterns: Generating Functions and Multivariate Gaussian Distribution. In 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 159, pp. 1:1-1:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
@InProceedings{asinowski_et_al:LIPIcs.AofA.2020.1, author = {Asinowski, Andrei and Banderier, Cyril}, title = {{On Lattice Paths with Marked Patterns: Generating Functions and Multivariate Gaussian Distribution}}, booktitle = {31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)}, pages = {1:1--1:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-147-4}, ISSN = {1868-8969}, year = {2020}, volume = {159}, editor = {Drmota, Michael and Heuberger, Clemens}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2020.1}, URN = {urn:nbn:de:0030-drops-120317}, doi = {10.4230/LIPIcs.AofA.2020.1}, annote = {Keywords: Lattice path, Dyck path, Motzkin path, generating function, algebraic function, kernel method, context-free grammar, multivariate Gaussian distribution} }
Published in: LIPIcs, Volume 110, 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)
Andrei Asinowski, Axel Bacher, Cyril Banderier, and Bernhard Gittenberger. Analytic Combinatorics of Lattice Paths with Forbidden Patterns: Asymptotic Aspects and Borges's Theorem. In 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 110, pp. 10:1-10:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
@InProceedings{asinowski_et_al:LIPIcs.AofA.2018.10, author = {Asinowski, Andrei and Bacher, Axel and Banderier, Cyril and Gittenberger, Bernhard}, title = {{Analytic Combinatorics of Lattice Paths with Forbidden Patterns: Asymptotic Aspects and Borges's Theorem}}, booktitle = {29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)}, pages = {10:1--10:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-078-1}, ISSN = {1868-8969}, year = {2018}, volume = {110}, editor = {Fill, James Allen and Ward, Mark Daniel}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2018.10}, URN = {urn:nbn:de:0030-drops-89035}, doi = {10.4230/LIPIcs.AofA.2018.10}, annote = {Keywords: Lattice paths, pattern avoidance, finite automata, context-free languages, autocorrelation, generating function, kernel method, asymptotic analysis, Gaussian limit law} }
Published in: Dagstuhl Seminar Proceedings, Volume 6201, Combinatorial and Algorithmic Foundations of Pattern and Association Discovery (2006)
Andrei Asinowski. Suballowable sequences of permutations. In Combinatorial and Algorithmic Foundations of Pattern and Association Discovery. Dagstuhl Seminar Proceedings, Volume 6201, pp. 1-2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)
@InProceedings{asinowski:DagSemProc.06201.9, author = {Asinowski, Andrei}, title = {{Suballowable sequences of permutations}}, booktitle = {Combinatorial and Algorithmic Foundations of Pattern and Association Discovery}, pages = {1--2}, series = {Dagstuhl Seminar Proceedings (DagSemProc)}, ISSN = {1862-4405}, year = {2006}, volume = {6201}, editor = {Rudolf Ahlswede and Alberto Apostolico and Vladimir I. Levenshtein}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.06201.9}, URN = {urn:nbn:de:0030-drops-7833}, doi = {10.4230/DagSemProc.06201.9}, annote = {Keywords: Aequences of permutations} }
Feedback for Dagstuhl Publishing