2 Search Results for "Bruynooghe, Maurice"


Document
Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)

Authors: James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter

Published in: Dagstuhl Manifestos, Volume 10, Issue 1 (2024)


Abstract
Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022,sser a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade.

Cite as

James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter. Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282). In Dagstuhl Manifestos, Volume 10, Issue 1, pp. 1-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{delgrande_et_al:DagMan.10.1.1,
  author =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  title =	{{Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)}},
  pages =	{1--61},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2024},
  volume =	{10},
  number =	{1},
  editor =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.10.1.1},
  URN =		{urn:nbn:de:0030-drops-201403},
  doi =		{10.4230/DagMan.10.1.1},
  annote =	{Keywords: Knowledge representation and reasoning, Applications of logics, Declarative representations, Formal logic}
}
Document
Modeling Machine Learning and Data Mining Problems with FO(·)

Authors: Hendrik Blockeel, Bart Bogaerts, Maurice Bruynooghe, Broes De Cat, Stef De Pooter, Marc Denecker, Anthony Labarre, Jan Ramon, and Sicco Verwer

Published in: LIPIcs, Volume 17, Technical Communications of the 28th International Conference on Logic Programming (ICLP'12) (2012)


Abstract
This paper reports on the use of the FO(·) language and the IDP framework for modeling and solving some machine learning and data mining tasks. The core component of a model in the IDP framework is an FO(·) theory consisting of formulas in first order logic and definitions; the latter are basically logic programs where clause bodies can have arbitrary first order formulas. Hence, it is a small step for a well-versed computer scientist to start modeling. We describe some models resulting from the collaboration between IDP experts and domain experts solving machine learning and data mining tasks. A first task is in the domain of stemmatology, a domain of philology concerned with the relationship between surviving variant versions of text. A second task is about a somewhat similar problem within biology where phylogenetic trees are used to represent the evolution of species. A third and final task is about learning a minimal automaton consistent with a given set of strings. For each task, we introduce the problem, present the IDP code and report on some experiments.

Cite as

Hendrik Blockeel, Bart Bogaerts, Maurice Bruynooghe, Broes De Cat, Stef De Pooter, Marc Denecker, Anthony Labarre, Jan Ramon, and Sicco Verwer. Modeling Machine Learning and Data Mining Problems with FO(·). In Technical Communications of the 28th International Conference on Logic Programming (ICLP'12). Leibniz International Proceedings in Informatics (LIPIcs), Volume 17, pp. 14-25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)


Copy BibTex To Clipboard

@InProceedings{blockeel_et_al:LIPIcs.ICLP.2012.14,
  author =	{Blockeel, Hendrik and Bogaerts, Bart and Bruynooghe, Maurice and De Cat, Broes and De Pooter, Stef and Denecker, Marc and Labarre, Anthony and Ramon, Jan and Verwer, Sicco},
  title =	{{Modeling Machine Learning and Data Mining Problems with FO(·)}},
  booktitle =	{Technical Communications of the 28th International Conference on Logic Programming (ICLP'12)},
  pages =	{14--25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-43-9},
  ISSN =	{1868-8969},
  year =	{2012},
  volume =	{17},
  editor =	{Dovier, Agostino and Santos Costa, V{\'\i}tor},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICLP.2012.14},
  URN =		{urn:nbn:de:0030-drops-36049},
  doi =		{10.4230/LIPIcs.ICLP.2012.14},
  annote =	{Keywords: Knowledge representation and reasoning, declarative modeling, logic programming, knowledge base systems, FO(·), IDP framework, stemmatology, phylogene}
}
  • Refine by Author
  • 1 Blockeel, Hendrik
  • 1 Bogaerts, Bart
  • 1 Bruynooghe, Maurice
  • 1 De Cat, Broes
  • 1 De Pooter, Stef
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Artificial intelligence
  • 1 Computing methodologies → Knowledge representation and reasoning
  • 1 Information systems → Information integration
  • 1 Theory of computation → Complexity theory and logic
  • 1 Theory of computation → Logic
  • Show More...

  • Refine by Keyword
  • 2 Knowledge representation and reasoning
  • 1 Applications of logics
  • 1 Declarative representations
  • 1 FO(·)
  • 1 Formal logic
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2012
  • 1 2024