4 Search Results for "Carral, David"


Document
Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)

Authors: James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter

Published in: Dagstuhl Manifestos, Volume 10, Issue 1 (2024)


Abstract
Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022,sser a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade.

Cite as

James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter. Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282). In Dagstuhl Manifestos, Volume 10, Issue 1, pp. 1-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{delgrande_et_al:DagMan.10.1.1,
  author =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  title =	{{Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)}},
  pages =	{1--61},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2024},
  volume =	{10},
  number =	{1},
  editor =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.10.1.1},
  URN =		{urn:nbn:de:0030-drops-201403},
  doi =		{10.4230/DagMan.10.1.1},
  annote =	{Keywords: Knowledge representation and reasoning, Applications of logics, Declarative representations, Formal logic}
}
Document
Position
Grounding Stream Reasoning Research

Authors: Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
In the last decade, there has been a growing interest in applying AI technologies to implement complex data analytics over data streams. To this end, researchers in various fields have been organising a yearly event called the "Stream Reasoning Workshop" to share perspectives, challenges, and experiences around this topic. In this paper, the previous organisers of the workshops and other community members provide a summary of the main research results that have been discussed during the first six editions of the event. These results can be categorised into four main research areas: The first is concerned with the technological challenges related to handling large data streams. The second area aims at adapting and extending existing semantic technologies to data streams. The third and fourth areas focus on how to implement reasoning techniques, either considering deductive or inductive techniques, to extract new and valuable knowledge from the data in the stream. This summary is written not only to provide a crystallisation of the field, but also to point out distinctive traits of the stream reasoning community. Moreover, it also provides a foundation for future research by enumerating a list of use cases and open challenges, to stimulate others to join this exciting research area.

Cite as

Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer. Grounding Stream Reasoning Research. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 2:1-2:47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{bonte_et_al:TGDK.2.1.2,
  author =	{Bonte, Pieter and Calbimonte, Jean-Paul and de Leng, Daniel and Dell'Aglio, Daniele and Della Valle, Emanuele and Eiter, Thomas and Giannini, Federico and Heintz, Fredrik and Schekotihin, Konstantin and Le-Phuoc, Danh and Mileo, Alessandra and Schneider, Patrik and Tommasini, Riccardo and Urbani, Jacopo and Ziffer, Giacomo},
  title =	{{Grounding Stream Reasoning Research}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:47},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.2},
  URN =		{urn:nbn:de:0030-drops-198597},
  doi =		{10.4230/TGDK.2.1.2},
  annote =	{Keywords: Stream Reasoning, Stream Processing, RDF streams, Streaming Linked Data, Continuous query processing, Temporal Logics, High-performance computing, Databases}
}
Document
Invited Talk
The Power of the Terminating Chase (Invited Talk)

Authors: Markus Krötzsch, Maximilian Marx, and Sebastian Rudolph

Published in: LIPIcs, Volume 127, 22nd International Conference on Database Theory (ICDT 2019)


Abstract
The chase has become a staple of modern database theory with applications in data integration, query optimisation, data exchange, ontology-based query answering, and many other areas. Most application scenarios and implementations require the chase to terminate and produce a finite universal model, and a large arsenal of sufficient termination criteria is available to guarantee this (generally undecidable) condition. In this invited tutorial, we therefore ask about the expressive power of logical theories for which the chase terminates. Specifically, which database properties can be recognised by such theories, i.e., which Boolean queries can they realise? For the skolem (semi-oblivious) chase, and almost any known termination criterion, this expressivity is just that of plain Datalog. Surprisingly, this limitation of most prior research does not apply to the chase in general. Indeed, we show that standard - chase terminating theories can realise queries with data complexities ranging from PTime to non-elementary that are out of reach for the terminating skolem chase. A "Datalog-first" standard chase that prioritises applications of rules without existential quantifiers makes modelling simpler - and we conjecture: computationally more efficient. This is one of the many open questions raised by our insights, and we conclude with an outlook on the research opportunities in this area.

Cite as

Markus Krötzsch, Maximilian Marx, and Sebastian Rudolph. The Power of the Terminating Chase (Invited Talk). In 22nd International Conference on Database Theory (ICDT 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 127, pp. 3:1-3:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{krotzsch_et_al:LIPIcs.ICDT.2019.3,
  author =	{Kr\"{o}tzsch, Markus and Marx, Maximilian and Rudolph, Sebastian},
  title =	{{The Power of the Terminating Chase}},
  booktitle =	{22nd International Conference on Database Theory (ICDT 2019)},
  pages =	{3:1--3:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-101-6},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{127},
  editor =	{Barcelo, Pablo and Calautti, Marco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2019.3},
  URN =		{urn:nbn:de:0030-drops-103057},
  doi =		{10.4230/LIPIcs.ICDT.2019.3},
  annote =	{Keywords: Existential rules, Tuple-generating dependencies, all-instances chase termination, expressive power, data complexity}
}
Document
Preserving Constraints with the Stable Chase

Authors: David Carral, Markus Krötzsch, Maximilian Marx, Ana Ozaki, and Sebastian Rudolph

Published in: LIPIcs, Volume 98, 21st International Conference on Database Theory (ICDT 2018)


Abstract
Conjunctive query answering over databases with constraints – also known as (tuple-generating) dependencies – is considered a central database task. To this end, several versions of a construction called chase have been described. Given a set Sigma of dependencies, it is interesting to ask which constraints not contained in Sigma that are initially satisfied in a given database instance are preserved when computing a chase over Sigma. Such constraints are an example for the more general class of incidental constraints, which when added to Sigma as new dependencies do not affect certain answers and might even speed up query answering. After formally introducing incidental constraints, we show that deciding incidentality is undecidable for tuple-generating dependencies, even in cases for which query entailment is decidable. For dependency sets with a finite universal model, the core chase can be used to decide incidentality. For the infinite case, we propose the stable chase, which generalises the core chase, and study its relation to incidental constraints.

Cite as

David Carral, Markus Krötzsch, Maximilian Marx, Ana Ozaki, and Sebastian Rudolph. Preserving Constraints with the Stable Chase. In 21st International Conference on Database Theory (ICDT 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 98, pp. 12:1-12:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{carral_et_al:LIPIcs.ICDT.2018.12,
  author =	{Carral, David and Kr\"{o}tzsch, Markus and Marx, Maximilian and Ozaki, Ana and Rudolph, Sebastian},
  title =	{{Preserving Constraints with the Stable Chase}},
  booktitle =	{21st International Conference on Database Theory (ICDT 2018)},
  pages =	{12:1--12:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-063-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{98},
  editor =	{Kimelfeld, Benny and Amsterdamer, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2018.12},
  URN =		{urn:nbn:de:0030-drops-86015},
  doi =		{10.4230/LIPIcs.ICDT.2018.12},
  annote =	{Keywords: Incidental constraints, Tuple-generating dependencies, Infinite core chase, Universal Model, BCQ entailment}
}
  • Refine by Author
  • 2 Krötzsch, Markus
  • 2 Marx, Maximilian
  • 2 Rudolph, Sebastian
  • 1 Bonte, Pieter
  • 1 Calbimonte, Jean-Paul
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Complexity theory and logic
  • 1 Computing methodologies → Artificial intelligence
  • 1 Computing methodologies → Description logics
  • 1 Computing methodologies → Knowledge representation and reasoning
  • 1 Computing methodologies → Temporal reasoning
  • Show More...

  • Refine by Keyword
  • 2 Tuple-generating dependencies
  • 1 Applications of logics
  • 1 BCQ entailment
  • 1 Continuous query processing
  • 1 Databases
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 2 2024
  • 1 2018
  • 1 2019