6 Search Results for "Défago, Xavier"


Volume

LIPIcs, Volume 286

27th International Conference on Principles of Distributed Systems (OPODIS 2023)

OPODIS 2023, December 6-8, 2023, Tokyo, Japan

Editors: Alysson Bessani, Xavier Défago, Junya Nakamura, Koichi Wada, and Yukiko Yamauchi

Document
Complete Volume
LIPIcs, Volume 286, OPODIS 2023, Complete Volume

Authors: Alysson Bessani, Xavier Défago, Junya Nakamura, Koichi Wada, and Yukiko Yamauchi

Published in: LIPIcs, Volume 286, 27th International Conference on Principles of Distributed Systems (OPODIS 2023)


Abstract
LIPIcs, Volume 286, OPODIS 2023, Complete Volume

Cite as

27th International Conference on Principles of Distributed Systems (OPODIS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 286, pp. 1-702, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Proceedings{bessani_et_al:LIPIcs.OPODIS.2023,
  title =	{{LIPIcs, Volume 286, OPODIS 2023, Complete Volume}},
  booktitle =	{27th International Conference on Principles of Distributed Systems (OPODIS 2023)},
  pages =	{1--702},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-308-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{286},
  editor =	{Bessani, Alysson and D\'{e}fago, Xavier and Nakamura, Junya and Wada, Koichi and Yamauchi, Yukiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2023},
  URN =		{urn:nbn:de:0030-drops-194896},
  doi =		{10.4230/LIPIcs.OPODIS.2023},
  annote =	{Keywords: LIPIcs, Volume 286, OPODIS 2023, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Alysson Bessani, Xavier Défago, Junya Nakamura, Koichi Wada, and Yukiko Yamauchi

Published in: LIPIcs, Volume 286, 27th International Conference on Principles of Distributed Systems (OPODIS 2023)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

27th International Conference on Principles of Distributed Systems (OPODIS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 286, pp. 0:i-0:xvi, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bessani_et_al:LIPIcs.OPODIS.2023.0,
  author =	{Bessani, Alysson and D\'{e}fago, Xavier and Nakamura, Junya and Wada, Koichi and Yamauchi, Yukiko},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{27th International Conference on Principles of Distributed Systems (OPODIS 2023)},
  pages =	{0:i--0:xvi},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-308-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{286},
  editor =	{Bessani, Alysson and D\'{e}fago, Xavier and Nakamura, Junya and Wada, Koichi and Yamauchi, Yukiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2023.0},
  URN =		{urn:nbn:de:0030-drops-194903},
  doi =		{10.4230/LIPIcs.OPODIS.2023.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Communication Efficient Self-Stabilizing Leader Election

Authors: Xavier Défago, Yuval Emek, Shay Kutten, Toshimitsu Masuzawa, and Yasumasa Tamura

Published in: LIPIcs, Volume 179, 34th International Symposium on Distributed Computing (DISC 2020)


Abstract
This paper presents a randomized self-stabilizing algorithm that elects a leader r in a general n-node undirected graph and constructs a spanning tree T rooted at r. The algorithm works under the synchronous message passing network model, assuming that the nodes know a linear upper bound on n and that each edge has a unique ID known to both its endpoints (or, alternatively, assuming the KT₁ model). The highlight of this algorithm is its superior communication efficiency: It is guaranteed to send a total of Õ (n) messages, each of constant size, till stabilization, while stabilizing in Õ (n) rounds, in expectation and with high probability. After stabilization, the algorithm sends at most one constant size message per round while communicating only over the (n - 1) edges of T. In all these aspects, the communication overhead of the new algorithm is far smaller than that of the existing (mostly deterministic) self-stabilizing leader election algorithms. The algorithm is relatively simple and relies mostly on known modules that are common in the fault free leader election literature; these modules are enhanced in various subtle ways in order to assemble them into a communication efficient self-stabilizing algorithm.

Cite as

Xavier Défago, Yuval Emek, Shay Kutten, Toshimitsu Masuzawa, and Yasumasa Tamura. Communication Efficient Self-Stabilizing Leader Election. In 34th International Symposium on Distributed Computing (DISC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 179, pp. 11:1-11:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{defago_et_al:LIPIcs.DISC.2020.11,
  author =	{D\'{e}fago, Xavier and Emek, Yuval and Kutten, Shay and Masuzawa, Toshimitsu and Tamura, Yasumasa},
  title =	{{Communication Efficient Self-Stabilizing Leader Election}},
  booktitle =	{34th International Symposium on Distributed Computing (DISC 2020)},
  pages =	{11:1--11:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-168-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{179},
  editor =	{Attiya, Hagit},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2020.11},
  URN =		{urn:nbn:de:0030-drops-130892},
  doi =		{10.4230/LIPIcs.DISC.2020.11},
  annote =	{Keywords: self-stabilization, leader election, communication overhead}
}
Document
Brief Announcement
Brief Announcement: Model Checking Rendezvous Algorithms for Robots with Lights in Euclidean Space

Authors: Xavier Défago, Adam Heriban, Sébastien Tixeuil, and Koichi Wada

Published in: LIPIcs, Volume 146, 33rd International Symposium on Distributed Computing (DISC 2019)


Abstract
This announces the first successful attempt at using model-checking techniques to verify the correctness of self-stabilizing distributed algorithms for robots evolving in a continuous environment. The study focuses on the problem of rendezvous of two robots with lights and presents a generic verification model for the SPIN model checker. It will be presented in full at an upcoming venue.

Cite as

Xavier Défago, Adam Heriban, Sébastien Tixeuil, and Koichi Wada. Brief Announcement: Model Checking Rendezvous Algorithms for Robots with Lights in Euclidean Space. In 33rd International Symposium on Distributed Computing (DISC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 146, pp. 41:1-41:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{defago_et_al:LIPIcs.DISC.2019.41,
  author =	{D\'{e}fago, Xavier and Heriban, Adam and Tixeuil, S\'{e}bastien and Wada, Koichi},
  title =	{{Brief Announcement: Model Checking Rendezvous Algorithms for Robots with Lights in Euclidean Space}},
  booktitle =	{33rd International Symposium on Distributed Computing (DISC 2019)},
  pages =	{41:1--41:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-126-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{146},
  editor =	{Suomela, Jukka},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2019.41},
  URN =		{urn:nbn:de:0030-drops-113487},
  doi =		{10.4230/LIPIcs.DISC.2019.41},
  annote =	{Keywords: Autonomous mobile robots, Rendezvous, Lights, Model Checking}
}
Document
Optimal Rendezvous L-Algorithms for Asynchronous Mobile Robots with External-Lights

Authors: Takashi Okumura, Koichi Wada, and Xavier Défago

Published in: LIPIcs, Volume 125, 22nd International Conference on Principles of Distributed Systems (OPODIS 2018)


Abstract
We study the Rendezvous problem for two autonomous mobile robots in asynchronous settings with persistent memory called light. It is well known that Rendezvous is impossible in a basic model when robots have no lights, even if the system is semi-synchronous. On the other hand, Rendezvous is possible if robots have lights of various types with a constant number of colors. If robots can observe not only their own lights but also other robots' lights, their lights are called full-light. If robots can only observe the state of other robots' lights, the lights are called external-light. This paper focuses on robots with external-lights in asynchronous settings and a particular class of algorithms called L-algorithms, where an L-algorithm computes a destination based only on the current colors of observable lights. When considering L-algorithms, Rendezvous can be solved by robots with full-lights and three colors in general asynchronous settings (called ASYNC) and the number of colors is optimal under these assumptions. In contrast, there exist no L-algorithms in ASYNC with external-lights regardless of the number of colors. In this paper, extending the impossibility result, we show that there exist no L-algorithms in so-called LC-1-Bounded ASYNC with external-lights regardless of the number of colors, where LC-1-Bounded ASYNC is a proper subset of ASYNC and other robots can execute at most one Look operation between the Look operation of a robot and its subsequent Compute operation. We also show that LC-1-Bounded ASYNC is the minimal subclass in which no L-algorithms with external-lights exist. That is, Rendezvous can be solved by L-algorithms using external-lights with a finite number of colors in LC-0-Bounded ASYNC (equivalently LC-atomic ASYNC). Furthermore, we show that the algorithms are optimal in the number of colors they use.

Cite as

Takashi Okumura, Koichi Wada, and Xavier Défago. Optimal Rendezvous L-Algorithms for Asynchronous Mobile Robots with External-Lights. In 22nd International Conference on Principles of Distributed Systems (OPODIS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 125, pp. 24:1-24:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{okumura_et_al:LIPIcs.OPODIS.2018.24,
  author =	{Okumura, Takashi and Wada, Koichi and D\'{e}fago, Xavier},
  title =	{{Optimal Rendezvous L-Algorithms for Asynchronous Mobile Robots with External-Lights}},
  booktitle =	{22nd International Conference on Principles of Distributed Systems (OPODIS 2018)},
  pages =	{24:1--24:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-098-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{125},
  editor =	{Cao, Jiannong and Ellen, Faith and Rodrigues, Luis and Ferreira, Bernardo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2018.24},
  URN =		{urn:nbn:de:0030-drops-100843},
  doi =		{10.4230/LIPIcs.OPODIS.2018.24},
  annote =	{Keywords: Autonomous mobile robots, Rendezvous, Lights, L-algorithms}
}
  • Refine by Author
  • 5 Défago, Xavier
  • 4 Wada, Koichi
  • 2 Bessani, Alysson
  • 2 Nakamura, Junya
  • 2 Yamauchi, Yukiko
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Distributed algorithms
  • 2 Computer systems organization → Dependable and fault-tolerant systems and networks
  • 2 Computing methodologies → Distributed algorithms
  • 2 Information systems → Distributed storage
  • 2 Networks → Ad hoc networks
  • Show More...

  • Refine by Keyword
  • 2 Autonomous mobile robots
  • 2 Lights
  • 2 Rendezvous
  • 1 Conference Organization
  • 1 Front Matter
  • Show More...

  • Refine by Type
  • 5 document
  • 1 volume

  • Refine by Publication Year
  • 3 2024
  • 2 2019
  • 1 2020

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail