4 Search Results for "Kim, Dohan"


Document
An Isabelle/HOL Formalization of Narrowing and Multiset Narrowing for E-Unifiability, Reachability and Infeasibility

Authors: Dohan Kim

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
We present an Isabelle/HOL formalization of narrowing for E-unifiability, reachability, and infeasibility. Given a semi-complete rewrite system ℛ and two terms s and t, we show a formalized proof that if narrowing terminates, then it provides a decision procedure for ℛ-unifiability for s and t, where ℛ is viewed as a set of equations. Furthermore, we present multiset narrowing and its formalization for multiset reachability and reachability analysis, providing decision procedures using certain restricted conditions on multiset reachability and reachability problems. Our multiset narrowing also provides a complete method for E-unifiability problems consisting of multiple goals if E can be represented by a complete rewrite system.

Cite as

Dohan Kim. An Isabelle/HOL Formalization of Narrowing and Multiset Narrowing for E-Unifiability, Reachability and Infeasibility. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 24:1-24:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kim:LIPIcs.ITP.2024.24,
  author =	{Kim, Dohan},
  title =	{{An Isabelle/HOL Formalization of Narrowing and Multiset Narrowing for E-Unifiability, Reachability and Infeasibility}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{24:1--24:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.24},
  URN =		{urn:nbn:de:0030-drops-207525},
  doi =		{10.4230/LIPIcs.ITP.2024.24},
  annote =	{Keywords: Narrowing, Multiset Narrowing, Unifiability, Reachability}
}
Document
Constraint Modelling with LLMs Using In-Context Learning

Authors: Kostis Michailidis, Dimos Tsouros, and Tias Guns

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
Constraint Programming (CP) allows for the modelling and solving of a wide range of combinatorial problems. However, modelling such problems using constraints over decision variables still requires significant expertise, both in conceptual thinking and syntactic use of modelling languages. In this work, we explore the potential of using pre-trained Large Language Models (LLMs) as coding assistants, to transform textual problem descriptions into concrete and executable CP specifications. We present different transformation pipelines with explicit intermediate representations, and we investigate the potential benefit of various retrieval-augmented example selection strategies for in-context learning. We evaluate our approach on 2 datasets from the literature, namely NL4Opt (optimisation) and Logic Grid Puzzles (satisfaction), and a heterogeneous set of exercises from a CP course. The results show that pre-trained LLMs have promising potential for initialising the modelling process, with retrieval-augmented in-context learning significantly enhancing their modelling capabilities.

Cite as

Kostis Michailidis, Dimos Tsouros, and Tias Guns. Constraint Modelling with LLMs Using In-Context Learning. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 20:1-20:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{michailidis_et_al:LIPIcs.CP.2024.20,
  author =	{Michailidis, Kostis and Tsouros, Dimos and Guns, Tias},
  title =	{{Constraint Modelling with LLMs Using In-Context Learning}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{20:1--20:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.20},
  URN =		{urn:nbn:de:0030-drops-207053},
  doi =		{10.4230/LIPIcs.CP.2024.20},
  annote =	{Keywords: Constraint Modelling, Constraint Acquisition, Constraint Programming, Large Language Models, In-Context Learning, Natural Language Processing, Named Entity Recognition, Retrieval-Augmented Generation, Optimisation}
}
Document
A Verified Algorithm for Deciding Pattern Completeness

Authors: René Thiemann and Akihisa Yamada

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Pattern completeness is the property that the left-hand sides of a functional program cover all cases w.r.t. pattern matching. In the context of term rewriting a related notion is quasi-reducibility, a prerequisite if one wants to perform ground confluence proofs by rewriting induction. In order to certify such confluence proofs, we develop a novel algorithm that decides pattern completeness and that can be used to ensure quasi-reducibility. One of the advantages of the proposed algorithm is its simple structure: it is similar to that of a regular matching algorithm and, unlike an existing decision procedure for quasi-reducibility, it avoids enumerating all terms up to a given depth. Despite the simple structure, proving the correctness of the algorithm is not immediate. Therefore we formalize the algorithm and verify its correctness using the proof assistant Isabelle/HOL. To this end, we not only verify some auxiliary algorithms, but also design an Isabelle library on sorted term rewriting. Moreover, we export the verified code in Haskell and experimentally evaluate its performance. We observe that our algorithm significantly outperforms existing algorithms, even including the pattern completeness check of the GHC Haskell compiler.

Cite as

René Thiemann and Akihisa Yamada. A Verified Algorithm for Deciding Pattern Completeness. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 27:1-27:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{thiemann_et_al:LIPIcs.FSCD.2024.27,
  author =	{Thiemann, Ren\'{e} and Yamada, Akihisa},
  title =	{{A Verified Algorithm for Deciding Pattern Completeness}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{27:1--27:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.27},
  URN =		{urn:nbn:de:0030-drops-203566},
  doi =		{10.4230/LIPIcs.FSCD.2024.27},
  annote =	{Keywords: Isabelle/HOL, pattern matching, term rewriting}
}
Document
An RPO-Based Ordering Modulo Permutation Equations and Its Applications to Rewrite Systems

Authors: Dohan Kim and Christopher Lynch

Published in: LIPIcs, Volume 195, 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)


Abstract
Rewriting modulo equations has been researched for several decades but due to the lack of suitable orderings, there are some limitations to rewriting modulo permutation equations. Given a finite set of permutation equations E, we present a new RPO-based ordering modulo E using (permutation) group actions and their associated orbits. It is an E-compatible reduction ordering on terms with the subterm property and is E-total on ground terms. We also present a completion and ground completion method for rewriting modulo a finite set of permutation equations E using our ordering modulo E. We show that our ground completion modulo E always admits a finite ground convergent (modulo E) rewrite system, which allows us to obtain the decidability of the word problem of ground theories modulo E.

Cite as

Dohan Kim and Christopher Lynch. An RPO-Based Ordering Modulo Permutation Equations and Its Applications to Rewrite Systems. In 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 195, pp. 19:1-19:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{kim_et_al:LIPIcs.FSCD.2021.19,
  author =	{Kim, Dohan and Lynch, Christopher},
  title =	{{An RPO-Based Ordering Modulo Permutation Equations and Its Applications to Rewrite Systems}},
  booktitle =	{6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)},
  pages =	{19:1--19:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-191-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{195},
  editor =	{Kobayashi, Naoki},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2021.19},
  URN =		{urn:nbn:de:0030-drops-142572},
  doi =		{10.4230/LIPIcs.FSCD.2021.19},
  annote =	{Keywords: Recursive Path Ordering, Permutation Equation, Permutation Group, Rewrite System, Completion, Ground Completion}
}
  • Refine by Author
  • 2 Kim, Dohan
  • 1 Guns, Tias
  • 1 Lynch, Christopher
  • 1 Michailidis, Kostis
  • 1 Thiemann, René
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 1 Completion
  • 1 Constraint Acquisition
  • 1 Constraint Modelling
  • 1 Constraint Programming
  • 1 Ground Completion
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 3 2024
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail