3 Search Results for "Kwok, Tsz Chiu"


Document
RANDOM
On the Houdré-Tetali Conjecture About an Isoperimetric Constant of Graphs

Authors: Lap Chi Lau and Dante Tjowasi

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
Houdré and Tetali defined a class of isoperimetric constants φ_p of graphs for 0 ≤ p ≤ 1, and conjectured a Cheeger-type inequality for φ_(1/2) of the form λ₂ ≲ φ_(1/2) ≲ √λ₂, where λ₂ is the second smallest eigenvalue of the normalized Laplacian matrix. If true, the conjecture would be a strengthening of the hard direction of the classical Cheeger’s inequality. Morris and Peres proved Houdré and Tetali’s conjecture up to an additional log factor, using techniques from evolving sets. We present the following related results on this conjecture. 1) We provide a family of counterexamples to the conjecture of Houdré and Tetali, showing that the logarithmic factor is needed. 2) We match Morris and Peres’s bound using standard spectral arguments. 3) We prove that Houdré and Tetali’s conjecture is true for any constant p strictly bigger than 1/2, which is also a strengthening of the hard direction of Cheeger’s inequality. Furthermore, our results can be extended to directed graphs using Chung’s definition of eigenvalues for directed graphs.

Cite as

Lap Chi Lau and Dante Tjowasi. On the Houdré-Tetali Conjecture About an Isoperimetric Constant of Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 36:1-36:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{lau_et_al:LIPIcs.APPROX/RANDOM.2024.36,
  author =	{Lau, Lap Chi and Tjowasi, Dante},
  title =	{{On the Houdr\'{e}-Tetali Conjecture About an Isoperimetric Constant of Graphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{36:1--36:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.36},
  URN =		{urn:nbn:de:0030-drops-210295},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.36},
  annote =	{Keywords: Isoperimetric constant, Markov chains, Cheeger’s inequality}
}
Document
Time-Space Tradeoffs for Finding Multi-Collisions in Merkle-Damgård Hash Functions

Authors: Akshima

Published in: LIPIcs, Volume 304, 5th Conference on Information-Theoretic Cryptography (ITC 2024)


Abstract
We analyze the multi-collision resistance of Merkle-Damgård hash function construction in the auxiliary input random oracle model. Finding multi-collisions or m-way collisions, for some parameter m, in a hash function consists of m distinct input that have the same output under the hash function. This is a natural generalization of the collision finding problem in hash functions, which is basically finding 2-way collisions. Hardness of finding collisions, or collision resistance, is an important security assumption in cryptography. While the time-space trade-offs for collision resistance of hash functions has received considerable attention, this is the first work that studies time-space trade-offs for the multi-collision resistance property of hash functions based on the popular and widely used Merkle-Damgård (MD) constructions. In this work, we study how the advantage of finding m-way collisions depends on the parameter m. We believe understanding whether multi-collision resistance is a strictly easier property than collision resistance is a fundamental problem and our work facilitates this for adversaries with auxiliary information against MD based hash functions. Furthermore, in this work we study how the advantage varies with the bound on length of the m colliding inputs. Prior works [Akshima et al., 2020; Ashrujit Ghoshal and Ilan Komargodski, 2022; Akshima et al., 2022] have shown that finding "longer" collisions with auxiliary input in MD based hash functions becomes easier. More precisely, the advantage of finding collisions linearly depends on the bound on the length of colliding inputs. In this work, we show similar dependence for m-way collision finding, for any m ≥ 2. We show a simple attack for finding 1-block m-way collisions which achieves an advantage of Ω̃(S/mN). For 2 ≤ B < log m, we give the best known attack for finding B-blocks m-way collision which achieves an advantage of Ω̃(ST/m^{1/(B-1)}N) when m^{1/(B-1)}-way collisions exist on every salt. For B > log m, our attack achieves an advantage of Ω̃(STB/N) which is optimal when SB ≥ T and ST² ≤ N. The main results of this work is showing that our attacks are optimal for B = 1 and B = 2. This implies that in the auxiliary-input random oracle model, the advantage decreases by a multiplicative factor of m for finding 1-block and 2-block m-way collisions (compared to collision finding) in Merkle-Damgård based hash functions.

Cite as

Akshima. Time-Space Tradeoffs for Finding Multi-Collisions in Merkle-Damgård Hash Functions. In 5th Conference on Information-Theoretic Cryptography (ITC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 304, pp. 9:1-9:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{akshima:LIPIcs.ITC.2024.9,
  author =	{Akshima},
  title =	{{Time-Space Tradeoffs for Finding Multi-Collisions in Merkle-Damg\r{a}rd Hash Functions}},
  booktitle =	{5th Conference on Information-Theoretic Cryptography (ITC 2024)},
  pages =	{9:1--9:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-333-1},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{304},
  editor =	{Aggarwal, Divesh},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2024.9},
  URN =		{urn:nbn:de:0030-drops-205171},
  doi =		{10.4230/LIPIcs.ITC.2024.9},
  annote =	{Keywords: Collision, hash functions, multi-collisions, Merkle-Damg\r{a}rd, pre-computation, auxiliary input}
}
Document
Lower Bounds on Expansions of Graph Powers

Authors: Tsz Chiu Kwok and Lap Chi Lau

Published in: LIPIcs, Volume 28, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014)


Abstract
Given a lazy regular graph G, we prove that the expansion of G^t is at least sqrt(t) times the expansion of G. This bound is tight and can be generalized to small set expansion. We show some applications of this result.

Cite as

Tsz Chiu Kwok and Lap Chi Lau. Lower Bounds on Expansions of Graph Powers. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 28, pp. 313-324, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{kwok_et_al:LIPIcs.APPROX-RANDOM.2014.313,
  author =	{Kwok, Tsz Chiu and Lau, Lap Chi},
  title =	{{Lower Bounds on Expansions of Graph Powers}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014)},
  pages =	{313--324},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-74-3},
  ISSN =	{1868-8969},
  year =	{2014},
  volume =	{28},
  editor =	{Jansen, Klaus and Rolim, Jos\'{e} and Devanur, Nikhil R. and Moore, Cristopher},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2014.313},
  URN =		{urn:nbn:de:0030-drops-47057},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2014.313},
  annote =	{Keywords: Conductance, Expansion, Graph power, Random walk}
}
  • Refine by Author
  • 2 Lau, Lap Chi
  • 1 Akshima
  • 1 Kwok, Tsz Chiu
  • 1 Tjowasi, Dante

  • Refine by Classification
  • 1 Mathematics of computing → Probability and statistics
  • 1 Security and privacy → Cryptography
  • 1 Security and privacy → Information-theoretic techniques
  • 1 Theory of computation → Random walks and Markov chains

  • Refine by Keyword
  • 1 Cheeger’s inequality
  • 1 Collision
  • 1 Conductance
  • 1 Expansion
  • 1 Graph power
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2024
  • 1 2014

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail