10 Search Results for "Oertel, Andy"


Document
The Complexity of Symmetry Breaking Beyond Lex-Leader

Authors: Markus Anders, Sofia Brenner, and Gaurav Rattan

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
Symmetry breaking is a widely popular approach to enhance solvers in constraint programming, such as those for SAT or MIP. Symmetry breaking predicates (SBPs) typically impose an order on variables and single out the lexicographic leader (lex-leader) in each orbit of assignments. Although it is NP-hard to find complete lex-leader SBPs, incomplete lex-leader SBPs are widely used in practice. In this paper, we investigate the complexity of computing complete SBPs, lex-leader or otherwise, for SAT. Our main result proves a natural barrier for efficiently computing SBPs: efficient certification of graph non-isomorphism. Our results explain the difficulty of obtaining short SBPs for important CP problems, such as matrix-models with row-column symmetries and graph generation problems. Our results hold even when SBPs are allowed to introduce additional variables. We show polynomial upper bounds for breaking certain symmetry groups, namely automorphism groups of trees and wreath products of groups with efficient SBPs.

Cite as

Markus Anders, Sofia Brenner, and Gaurav Rattan. The Complexity of Symmetry Breaking Beyond Lex-Leader. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 3:1-3:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{anders_et_al:LIPIcs.CP.2024.3,
  author =	{Anders, Markus and Brenner, Sofia and Rattan, Gaurav},
  title =	{{The Complexity of Symmetry Breaking Beyond Lex-Leader}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{3:1--3:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.3},
  URN =		{urn:nbn:de:0030-drops-206881},
  doi =		{10.4230/LIPIcs.CP.2024.3},
  annote =	{Keywords: symmetry breaking, boolean satisfiability, matrix models, graph isomorphism}
}
Document
Certifying Without Loss of Generality Reasoning in Solution-Improving Maximum Satisfiability

Authors: Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, Tobias Paxian, and Dieter Vandesande

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
Proof logging has long been the established method to certify correctness of Boolean satisfiability (SAT) solvers, but has only recently been introduced for SAT-based optimization (MaxSAT). The focus of this paper is solution-improving search (SIS), in which a SAT solver is iteratively queried for increasingly better solutions until an optimal one is found. A challenging aspect of modern SIS solvers is that they make use of complex "without loss of generality" arguments that are quite involved to understand even at a human meta-level, let alone to express in a simple, machine-verifiable proof. In this work, we develop pseudo-Boolean proof logging methods for solution-improving MaxSAT solving, and use them to produce a certifying version of the state-of-the-art solver Pacose with VeriPB proofs. Our experimental evaluation demonstrates that this approach works in practice. We hope that this is yet another step towards general adoption of proof logging in MaxSAT solving.

Cite as

Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, Tobias Paxian, and Dieter Vandesande. Certifying Without Loss of Generality Reasoning in Solution-Improving Maximum Satisfiability. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 4:1-4:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{berg_et_al:LIPIcs.CP.2024.4,
  author =	{Berg, Jeremias and Bogaerts, Bart and Nordstr\"{o}m, Jakob and Oertel, Andy and Paxian, Tobias and Vandesande, Dieter},
  title =	{{Certifying Without Loss of Generality Reasoning in Solution-Improving Maximum Satisfiability}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{4:1--4:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.4},
  URN =		{urn:nbn:de:0030-drops-206895},
  doi =		{10.4230/LIPIcs.CP.2024.4},
  annote =	{Keywords: proof logging, certifying algorithms, MaxSAT, solution-improving search, SAT-UNSAT, maximum satisfiability, combinatorial optimization, certification, pseudo-Boolean}
}
Document
Pseudo-Boolean Reasoning About States and Transitions to Certify Dynamic Programming and Decision Diagram Algorithms

Authors: Emir Demirović, Ciaran McCreesh, Matthew J. McIlree, Jakob Nordström, Andy Oertel, and Konstantin Sidorov

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
Pseudo-Boolean proof logging has been used successfully to provide certificates of optimality from a variety of constraint- and satisifability-style solvers that combine reasoning with a backtracking or clause-learning search. Another paradigm, occurring in dynamic programming and decision diagram solving, instead reasons about partial states and possible transitions between them. We describe a framework for generating clean and efficient pseudo-Boolean proofs for these kinds of algorithm, and use it to produce certifying algorithms for knapsack, longest path, and interval scheduling. Because we use a common proof system, we can also reason about hybrid solving algorithms: we demonstrate this by providing proof logging for a dynamic programming based knapsack propagator inside a constraint programming solver.

Cite as

Emir Demirović, Ciaran McCreesh, Matthew J. McIlree, Jakob Nordström, Andy Oertel, and Konstantin Sidorov. Pseudo-Boolean Reasoning About States and Transitions to Certify Dynamic Programming and Decision Diagram Algorithms. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 9:1-9:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{demirovic_et_al:LIPIcs.CP.2024.9,
  author =	{Demirovi\'{c}, Emir and McCreesh, Ciaran and McIlree, Matthew J. and Nordstr\"{o}m, Jakob and Oertel, Andy and Sidorov, Konstantin},
  title =	{{Pseudo-Boolean Reasoning About States and Transitions to Certify Dynamic Programming and Decision Diagram Algorithms}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{9:1--9:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.9},
  URN =		{urn:nbn:de:0030-drops-206948},
  doi =		{10.4230/LIPIcs.CP.2024.9},
  annote =	{Keywords: Proof logging, dynamic programming, decision diagrams}
}
Document
Short Paper
Minimizing Working-Group Conflicts in Conference Session Scheduling Through Maximum Satisfiability (Short Paper)

Authors: Sami Cherif, Heythem Sattoutah, Chu-Min Li, Corinne Lucet, and Laure Brisoux-Devendeville

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
This paper explores the application of Maximum Satisfiability (Max-SAT) to the complex problem of conference session scheduling, with a particular focus on minimizing working-group conflicts within the context of the ROADEF conference, the largest French-speaking event aimed at bringing together researchers from various fields such as combinatorial optimization and operational research. A Max-SAT model is introduced then enhanced with new variables, and solved through state-of-the-art solvers. The results of applying our formulation to data from ROADEF demonstrate its ability to effectively compute session schedules, while enabling to reduce the number of conflicts and the maximum number of parallel sessions compared to the handmade solutions proposed by the organizing committees. These findings underscore the potential of Max-SAT as a valuable tool for optimizing conference scheduling processes, offering a systematic and efficient solution that ensures a smoother and more productive experience for attendees and organizers alike.

Cite as

Sami Cherif, Heythem Sattoutah, Chu-Min Li, Corinne Lucet, and Laure Brisoux-Devendeville. Minimizing Working-Group Conflicts in Conference Session Scheduling Through Maximum Satisfiability (Short Paper). In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 34:1-34:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cherif_et_al:LIPIcs.CP.2024.34,
  author =	{Cherif, Sami and Sattoutah, Heythem and Li, Chu-Min and Lucet, Corinne and Brisoux-Devendeville, Laure},
  title =	{{Minimizing Working-Group Conflicts in Conference Session Scheduling Through Maximum Satisfiability}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{34:1--34:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.34},
  URN =		{urn:nbn:de:0030-drops-207190},
  doi =		{10.4230/LIPIcs.CP.2024.34},
  annote =	{Keywords: Maximum Satisfiability, Scheduling, Modeling}
}
Document
Satsuma: Structure-Based Symmetry Breaking in SAT

Authors: Markus Anders, Sofia Brenner, and Gaurav Rattan

Published in: LIPIcs, Volume 305, 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)


Abstract
Symmetry reduction is crucial for solving many interesting SAT instances in practice. Numerous approaches have been proposed, which try to strike a balance between symmetry reduction and computational overhead. Arguably the most readily applicable method is the computation of static symmetry breaking constraints: a constraint restricting the search-space to non-symmetrical solutions is added to a given SAT instance. A distinct advantage of static symmetry breaking is that the SAT solver itself is not modified. A disadvantage is that the strength of symmetry reduction is usually limited. In order to boost symmetry reduction, the state-of-the-art tool BreakID [Devriendt et. al] pioneered the identification and tailored breaking of a particular substructure of symmetries, the so-called row interchangeability groups. In this paper, we propose a new symmetry breaking tool called satsuma. The core principle of our tool is to exploit more diverse but frequently occurring symmetry structures. This is enabled by new practical detection algorithms for row interchangeability, row-column symmetry, Johnson symmetry, and various combinations. Based on the resulting structural description, we then produce symmetry breaking constraints. We compare this new approach to BreakID on a range of instance families exhibiting symmetry. Our benchmarks suggest improved symmetry reduction in the presence of Johnson symmetry and comparable performance in the presence of row-column symmetry. Moreover, our implementation runs significantly faster, even though it identifies more diverse structures.

Cite as

Markus Anders, Sofia Brenner, and Gaurav Rattan. Satsuma: Structure-Based Symmetry Breaking in SAT. In 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 305, pp. 4:1-4:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{anders_et_al:LIPIcs.SAT.2024.4,
  author =	{Anders, Markus and Brenner, Sofia and Rattan, Gaurav},
  title =	{{Satsuma: Structure-Based Symmetry Breaking in SAT}},
  booktitle =	{27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)},
  pages =	{4:1--4:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-334-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{305},
  editor =	{Chakraborty, Supratik and Jiang, Jie-Hong Roland},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.4},
  URN =		{urn:nbn:de:0030-drops-205269},
  doi =		{10.4230/LIPIcs.SAT.2024.4},
  annote =	{Keywords: symmetry breaking, boolean satisfiability, graph isomorphism}
}
Document
MaxSAT Resolution with Inclusion Redundancy

Authors: Ilario Bonacina, Maria Luisa Bonet, and Massimo Lauria

Published in: LIPIcs, Volume 305, 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)


Abstract
Popular redundancy rules for SAT are not necessarily sound for MaxSAT. The works of [Bonacina-Bonet-Buss-Lauria'24] and [Ihalainen-Berg-Järvisalo'22] proposed ways to adapt them, but required specific encodings and more sophisticated checks during proof verification. Here, we propose a different way to adapt redundancy rules from SAT to MaxSAT. Our rules do not require specific encodings, their correctness is simpler to check, but they are slightly less expressive. However, the proposed redundancy rules, when added to MaxSAT-Resolution, are already strong enough to capture Branch-and-bound algorithms, enable short proofs of the optimal cost of notable principles (e.g., the Pigeonhole Principle and the Parity Principle), and allow to break simple symmetries (e.g., XOR-ification does not make formulas harder).

Cite as

Ilario Bonacina, Maria Luisa Bonet, and Massimo Lauria. MaxSAT Resolution with Inclusion Redundancy. In 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 305, pp. 7:1-7:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bonacina_et_al:LIPIcs.SAT.2024.7,
  author =	{Bonacina, Ilario and Bonet, Maria Luisa and Lauria, Massimo},
  title =	{{MaxSAT Resolution with Inclusion Redundancy}},
  booktitle =	{27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)},
  pages =	{7:1--7:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-334-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{305},
  editor =	{Chakraborty, Supratik and Jiang, Jie-Hong Roland},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.7},
  URN =		{urn:nbn:de:0030-drops-205298},
  doi =		{10.4230/LIPIcs.SAT.2024.7},
  annote =	{Keywords: MaxSAT, Redundancy, MaxSAT resolution, Branch-and-bound, Pigeonhole principle, Parity Principle}
}
Document
Enhancing MaxSAT Local Search via a Unified Soft Clause Weighting Scheme

Authors: Yi Chu, Chu-Min Li, Furong Ye, and Shaowei Cai

Published in: LIPIcs, Volume 305, 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)


Abstract
Local search has been widely applied to solve the well-known (weighted) partial MaxSAT problem, significantly influencing many real-world applications. The main difficulty to overcome when designing a local search algorithm is that it can easily fall into local optima. Clause weighting is a beneficial technique that dynamically adjusts the landscape of search space to help the algorithm escape from local optima. Existing works tend to increase the weights of falsified clauses, and such strategies may result in an unpredictable landscape of search space during the optimization process. Therefore, in this paper, we propose a Unified Soft Clause Weighting Scheme called Unified-SW, which increases the weights of all soft clauses in feasible local optima, whether they are satisfied or not, while preserving the hierarchy among them. We implemented Unified-SW in a new local search solver called USW-LS. Experimental results demonstrate that USW-LS, outperforms the state-of-the-art local search solvers across benchmarks from anytime tracks of recent MaxSAT Evaluations. More promisingly, a hybrid solver combining USW-LS and TT-Open-WBO-Inc won all four categories in the anytime track of MaxSAT Evaluation 2023.

Cite as

Yi Chu, Chu-Min Li, Furong Ye, and Shaowei Cai. Enhancing MaxSAT Local Search via a Unified Soft Clause Weighting Scheme. In 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 305, pp. 8:1-8:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chu_et_al:LIPIcs.SAT.2024.8,
  author =	{Chu, Yi and Li, Chu-Min and Ye, Furong and Cai, Shaowei},
  title =	{{Enhancing MaxSAT Local Search via a Unified Soft Clause Weighting Scheme}},
  booktitle =	{27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)},
  pages =	{8:1--8:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-334-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{305},
  editor =	{Chakraborty, Supratik and Jiang, Jie-Hong Roland},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.8},
  URN =		{urn:nbn:de:0030-drops-205301},
  doi =		{10.4230/LIPIcs.SAT.2024.8},
  annote =	{Keywords: Weighted Partial MaxSAT, Local Search Method, Weighting Scheme}
}
Document
Trusted Scalable SAT Solving with On-The-Fly LRAT Checking

Authors: Dominik Schreiber

Published in: LIPIcs, Volume 305, 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)


Abstract
Recent advances have enabled powerful distributed SAT solvers to emit proofs of unsatisfiability, which renders them as trustworthy as sequential solvers. However, this mode of operation is still lacking behind conventional distributed solving in terms of scalability. We argue that the core limiting factor of such approaches is the requirement of a single, persistent artifact at the end of solving that is then checked independently (and sequentially). As an alternative, we propose a bottleneck-free setup that exploits recent advancements in producing and processing LRAT information to immediately check all solvers' reasoning on-the-fly during solving. In terms of clause sharing, our approach transfers the guarantee of a derived clause’s soundness from the sending to the receiving side via cryptographic signatures. Experiments with up to 2432 cores (32 nodes) indicate that our approach reduces the running time overhead incurred by proof checking by an order of magnitude, down to a median overhead of ≤ 42% over non trusted solving.

Cite as

Dominik Schreiber. Trusted Scalable SAT Solving with On-The-Fly LRAT Checking. In 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 305, pp. 25:1-25:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{schreiber:LIPIcs.SAT.2024.25,
  author =	{Schreiber, Dominik},
  title =	{{Trusted Scalable SAT Solving with On-The-Fly LRAT Checking}},
  booktitle =	{27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)},
  pages =	{25:1--25:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-334-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{305},
  editor =	{Chakraborty, Supratik and Jiang, Jie-Hong Roland},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.25},
  URN =		{urn:nbn:de:0030-drops-205477},
  doi =		{10.4230/LIPIcs.SAT.2024.25},
  annote =	{Keywords: SAT solving, distributed algorithms, proofs}
}
Document
Theory and Practice of SAT and Combinatorial Solving (Dagstuhl Seminar 22411)

Authors: Olaf Beyersdorff, Armin Biere, Vijay Ganesh, Jakob Nordström, and Andy Oertel

Published in: Dagstuhl Reports, Volume 12, Issue 10 (2023)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 22411 "Theory and Practice of SAT and Combinatorial Solving". The purpose of this workshop was to explore the Boolean satisfiability (SAT) problem, which plays a fascinating dual role in computer science. By the theory of NP-completeness, this problem captures thousands of important applications in different fields, and a rich mathematical theory has been developed showing that all these problems are likely to be infeasible to solve in the worst case. But real-world problems are typically not worst-case, and in recent decades exceedingly efficient algorithms based on so-called conflict-driven clause learning (CDCL) have turned SAT solvers into highly practical tools for solving large-scale real-world problems in a wide range of application areas. Analogous developments have taken place for problems beyond NP such as SAT-based optimization (MaxSAT), pseudo-Boolean optimization, satisfiability modulo theories (SMT) solving, quantified Boolean formula (QBF) solving, constraint programming, and mixed integer programming, where the conflict-driven paradigm has sometimes been added to other powerful techniques. The current state of the art in combinatorial solving presents a host of exciting challenges at the borderline between theory and practice. Can we gain a deeper scientific understanding of the techniques and heuristics used in modern combinatorial solvers and why they are so successful? Can we develop tools for rigorous analysis of the potential and limitations of these algorithms? Can computational complexity theory be extended to shed light on real-world settings that go beyond worst case? Can more powerful methods of reasoning developed in theoretical research be harnessed to yield improvements in practical performance? And can state-of-the-art combinatorial solvers be enhanced to not only solve problems, but also provide verifiable proofs of correctness for the solutions they produce? This workshop gathered leading applied and theoretical researchers working on SAT and combinatorial optimization more broadly in order to stimulate an exchange of ideas and techniques. We see great opportunities for fruitful interplay between theory and practice in these areas, as well as for technology transfer between different paradigms in combinatorial optimization, and our assessment is that this workshop demonstrated very convincingly that a more vigorous interaction has potential for major long-term impact in computer science, as well for applications in industry.

Cite as

Olaf Beyersdorff, Armin Biere, Vijay Ganesh, Jakob Nordström, and Andy Oertel. Theory and Practice of SAT and Combinatorial Solving (Dagstuhl Seminar 22411). In Dagstuhl Reports, Volume 12, Issue 10, pp. 84-105, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{beyersdorff_et_al:DagRep.12.10.84,
  author =	{Beyersdorff, Olaf and Biere, Armin and Ganesh, Vijay and Nordstr\"{o}m, Jakob and Oertel, Andy},
  title =	{{Theory and Practice of SAT and Combinatorial Solving (Dagstuhl Seminar 22411)}},
  pages =	{84--105},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2023},
  volume =	{12},
  number =	{10},
  editor =	{Beyersdorff, Olaf and Biere, Armin and Ganesh, Vijay and Nordstr\"{o}m, Jakob and Oertel, Andy},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.12.10.84},
  URN =		{urn:nbn:de:0030-drops-178212},
  doi =		{10.4230/DagRep.12.10.84},
  annote =	{Keywords: Boolean satisfiability (SAT), SAT solving, computational complexity, proof complexity, combinatorial solving, combinatorial optimization, constraint programming, mixed integer linear programming}
}
Document
Certified CNF Translations for Pseudo-Boolean Solving

Authors: Stephan Gocht, Ruben Martins, Jakob Nordström, and Andy Oertel

Published in: LIPIcs, Volume 236, 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)


Abstract
The dramatic improvements in Boolean satisfiability (SAT) solving since the turn of the millennium have made it possible to leverage state-of-the-art conflict-driven clause learning (CDCL) solvers for many combinatorial problems in academia and industry, and the use of proof logging has played a crucial role in increasing the confidence that the results these solvers produce are correct. However, the fact that SAT proof logging is performed in conjunctive normal form (CNF) clausal format means that it has not been possible to extend guarantees of correctness to the use of SAT solvers for more expressive combinatorial paradigms, where the first step is an unverified translation of the input to CNF. In this work, we show how cutting-planes-based reasoning can provide proof logging for solvers that translate pseudo-Boolean (a.k.a. 0-1 integer linear) decision problems to CNF and then run CDCL. To support a wide range of encodings, we provide a uniform and easily extensible framework for proof logging of CNF translations. We are hopeful that this is just a first step towards providing a unified proof logging approach that will also extend to maximum satisfiability (MaxSAT) solving and pseudo-Boolean optimization in general.

Cite as

Stephan Gocht, Ruben Martins, Jakob Nordström, and Andy Oertel. Certified CNF Translations for Pseudo-Boolean Solving. In 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 236, pp. 16:1-16:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gocht_et_al:LIPIcs.SAT.2022.16,
  author =	{Gocht, Stephan and Martins, Ruben and Nordstr\"{o}m, Jakob and Oertel, Andy},
  title =	{{Certified CNF Translations for Pseudo-Boolean Solving}},
  booktitle =	{25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)},
  pages =	{16:1--16:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-242-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{236},
  editor =	{Meel, Kuldeep S. and Strichman, Ofer},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2022.16},
  URN =		{urn:nbn:de:0030-drops-166901},
  doi =		{10.4230/LIPIcs.SAT.2022.16},
  annote =	{Keywords: pseudo-Boolean solving, 0-1 integer linear program, proof logging, certifying algorithms, certified translation, CNF encoding, cutting planes}
}
  • Refine by Author
  • 4 Nordström, Jakob
  • 4 Oertel, Andy
  • 2 Anders, Markus
  • 2 Brenner, Sofia
  • 2 Li, Chu-Min
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Automated reasoning
  • 3 Theory of computation → Logic and verification
  • 2 Hardware → Theorem proving and SAT solving
  • 2 Theory of computation → Complexity theory and logic
  • 2 Theory of computation → Constraint and logic programming
  • Show More...

  • Refine by Keyword
  • 2 MaxSAT
  • 2 SAT solving
  • 2 boolean satisfiability
  • 2 certifying algorithms
  • 2 combinatorial optimization
  • Show More...

  • Refine by Type
  • 10 document

  • Refine by Publication Year
  • 8 2024
  • 1 2022
  • 1 2023