2 Search Results for "Potępa, Krzysztof"


Document
Track A: Algorithms, Complexity and Games
Minimizing Tardy Processing Time on a Single Machine in Near-Linear Time

Authors: Nick Fischer and Leo Wennmann

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this work we revisit the elementary scheduling problem 1||∑ p_j U_j. The goal is to select, among n jobs with processing times and due dates, a subset of jobs with maximum total processing time that can be scheduled in sequence without violating their due dates. This problem is NP-hard, but a classical algorithm by Lawler and Moore from the 60s solves this problem in pseudo-polynomial time O(nP), where P is the total processing time of all jobs. With the aim to develop best-possible pseudo-polynomial-time algorithms, a recent wave of results has improved Lawler and Moore’s algorithm for 1||∑ p_j U_j: First to time Õ(P^{7/4}) [Bringmann, Fischer, Hermelin, Shabtay, Wellnitz; ICALP'20], then to time Õ(P^{5/3}) [Klein, Polak, Rohwedder; SODA'23], and finally to time Õ(P^{7/5}) [Schieber, Sitaraman; WADS'23]. It remained an exciting open question whether these works can be improved further. In this work we develop an algorithm in near-linear time Õ(P) for the 1||∑ p_j U_j problem. This running time not only significantly improves upon the previous results, but also matches conditional lower bounds based on the Strong Exponential Time Hypothesis or the Set Cover Hypothesis and is therefore likely optimal (up to subpolynomial factors). Our new algorithm also extends to the case of m machines in time Õ(P^m). In contrast to the previous improvements, we take a different, more direct approach inspired by the recent reductions from Modular Subset Sum to dynamic string problems. We thereby arrive at a satisfyingly simple algorithm.

Cite as

Nick Fischer and Leo Wennmann. Minimizing Tardy Processing Time on a Single Machine in Near-Linear Time. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 64:1-64:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{fischer_et_al:LIPIcs.ICALP.2024.64,
  author =	{Fischer, Nick and Wennmann, Leo},
  title =	{{Minimizing Tardy Processing Time on a Single Machine in Near-Linear Time}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{64:1--64:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.64},
  URN =		{urn:nbn:de:0030-drops-202079},
  doi =		{10.4230/LIPIcs.ICALP.2024.64},
  annote =	{Keywords: Scheduling, Fine-Grained Complexity, Dynamic Strings}
}
Document
Faster Deterministic Modular Subset Sum

Authors: Krzysztof Potępa

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
We consider the Modular Subset Sum problem: given a multiset X of integers from ℤ_m and a target integer t, decide if there exists a subset of X with a sum equal to t (mod m). Recent independent works by Cardinal and Iacono (SOSA'21), and Axiotis et al. (SOSA'21) provided simple and near-linear algorithms for this problem. Cardinal and Iacono gave a randomized algorithm that runs in 𝒪(m log m) time, while Axiotis et al. gave a deterministic algorithm that runs in 𝒪(m polylog m) time. Both results work by reduction to a text problem, which is solved using a dynamic strings data structure. In this work, we develop a simple data structure, designed specifically to handle the text problem that arises in the algorithms for Modular Subset Sum. Our data structure, which we call the shift-tree, is a simple variant of a segment tree. We provide both a hashing-based and a deterministic variant of the shift-trees. We then apply our data structure to the Modular Subset Sum problem and obtain two algorithms. The first algorithm is Monte-Carlo randomized and matches the 𝒪(m log m) runtime of the Las-Vegas algorithm by Cardinal and Iacono. The second algorithm is fully deterministic and runs in 𝒪(m log m ⋅ α(m)) time, where α is the inverse Ackermann function.

Cite as

Krzysztof Potępa. Faster Deterministic Modular Subset Sum. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 76:1-76:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{potepa:LIPIcs.ESA.2021.76,
  author =	{Pot\k{e}pa, Krzysztof},
  title =	{{Faster Deterministic Modular Subset Sum}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{76:1--76:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.76},
  URN =		{urn:nbn:de:0030-drops-146574},
  doi =		{10.4230/LIPIcs.ESA.2021.76},
  annote =	{Keywords: Modular Subset Sum, String Problem, Segment Tree, Data Structure}
}
  • Refine by Author
  • 1 Fischer, Nick
  • 1 Potępa, Krzysztof
  • 1 Wennmann, Leo

  • Refine by Classification
  • 1 Theory of computation → Algorithm design techniques
  • 1 Theory of computation → Data structures design and analysis
  • 1 Theory of computation → Discrete optimization

  • Refine by Keyword
  • 1 Data Structure
  • 1 Dynamic Strings
  • 1 Fine-Grained Complexity
  • 1 Modular Subset Sum
  • 1 Scheduling
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2021
  • 1 2024