Published in: LIPIcs, Volume 176, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)
Sarah Miracle, Amanda Pascoe Streib, and Noah Streib. Iterated Decomposition of Biased Permutations via New Bounds on the Spectral Gap of Markov Chains. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 176, pp. 3:1-3:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
@InProceedings{miracle_et_al:LIPIcs.APPROX/RANDOM.2020.3, author = {Miracle, Sarah and Streib, Amanda Pascoe and Streib, Noah}, title = {{Iterated Decomposition of Biased Permutations via New Bounds on the Spectral Gap of Markov Chains}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)}, pages = {3:1--3:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-164-1}, ISSN = {1868-8969}, year = {2020}, volume = {176}, editor = {Byrka, Jaros{\l}aw and Meka, Raghu}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2020.3}, URN = {urn:nbn:de:0030-drops-126069}, doi = {10.4230/LIPIcs.APPROX/RANDOM.2020.3}, annote = {Keywords: Markov chains, Permutations, Decomposition, Spectral Gap, Iterated Decomposition} }
Feedback for Dagstuhl Publishing