4 Search Results for "D�sa, Gy�rgy"


Document
Track A: Algorithms, Complexity and Games
Max Weight Independent Set in Graphs with No Long Claws: An Analog of the Gyárfás' Path Argument

Authors: Konrad Majewski, Tomáš Masařík, Jana Novotná, Karolina Okrasa, Marcin Pilipczuk, Paweł Rzążewski, and Marek Sokołowski

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We revisit recent developments for the Maximum Weight Independent Set problem in graphs excluding a subdivided claw S_{t,t,t} as an induced subgraph [Chudnovsky, Pilipczuk, Pilipczuk, Thomassé, SODA 2020] and provide a subexponential-time algorithm with improved running time 2^𝒪(√nlog n) and a quasipolynomial-time approximation scheme with improved running time 2^𝒪(ε^{-1} log⁵ n). The Gyárfás' path argument, a powerful tool that is the main building block for many algorithms in P_t-free graphs, ensures that given an n-vertex P_t-free graph, in polynomial time we can find a set P of at most t-1 vertices, such that every connected component of G-N[P] has at most n/2 vertices. Our main technical contribution is an analog of this result for S_{t,t,t}-free graphs: given an n-vertex S_{t,t,t}-free graph, in polynomial time we can find a set P of 𝒪(t log n) vertices and an extended strip decomposition (an appropriate analog of the decomposition into connected components) of G-N[P] such that every particle (an appropriate analog of a connected component to recurse on) of the said extended strip decomposition has at most n/2 vertices.

Cite as

Konrad Majewski, Tomáš Masařík, Jana Novotná, Karolina Okrasa, Marcin Pilipczuk, Paweł Rzążewski, and Marek Sokołowski. Max Weight Independent Set in Graphs with No Long Claws: An Analog of the Gyárfás' Path Argument. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 93:1-93:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{majewski_et_al:LIPIcs.ICALP.2022.93,
  author =	{Majewski, Konrad and Masa\v{r}{\'\i}k, Tom\'{a}\v{s} and Novotn\'{a}, Jana and Okrasa, Karolina and Pilipczuk, Marcin and Rz\k{a}\.{z}ewski, Pawe{\l} and Soko{\l}owski, Marek},
  title =	{{Max Weight Independent Set in Graphs with No Long Claws: An Analog of the Gy\'{a}rf\'{a}s' Path Argument}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{93:1--93:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.93},
  URN =		{urn:nbn:de:0030-drops-164343},
  doi =		{10.4230/LIPIcs.ICALP.2022.93},
  annote =	{Keywords: Max Independent Set, subdivided claw, QPTAS, subexponential-time algorithm}
}
Document
A New and Improved Algorithm for Online Bin Packing

Authors: János Balogh, József Békési, György Dósa, Leah Epstein, and Asaf Levin

Published in: LIPIcs, Volume 112, 26th Annual European Symposium on Algorithms (ESA 2018)


Abstract
We revisit the classic online bin packing problem studied in the half-century. In this problem, items of positive sizes no larger than 1 are presented one by one to be packed into subsets called bins of total sizes no larger than 1, such that every item is assigned to a bin before the next item is presented. We use online partitioning of items into classes based on sizes, as in previous work, but we also apply a new method where items of one class can be packed into more than two types of bins, where a bin type is defined according to the number of such items grouped together. Additionally, we allow the smallest class of items to be packed in multiple kinds of bins, and not only into their own bins. We combine this with the approach of packing of sufficiently big items according to their exact sizes. Finally, we simplify the analysis of such algorithms, allowing the analysis to be based on the most standard weight functions. This simplified analysis allows us to study the algorithm which we defined based on all these ideas. This leads us to the design and analysis of the first algorithm of asymptotic competitive ratio strictly below 1.58, specifically, we break this barrier by providing an algorithm AH (Advanced Harmonic) whose asymptotic competitive ratio does not exceed 1.57829. Our main contribution is the introduction of the simple analysis based on weight function to analyze the state of the art online algorithms for the classic online bin packing problem. The previously used analytic tool named weight system was too complicated for the community in this area to adjust it for other problems and other algorithmic tools that are needed in order to improve the current best algorithms. We show that the weight system based analysis is not needed for the analysis of the current algorithms for the classic online bin packing problem. The importance of a simple analysis is demonstrated by analyzing several new features together with all existing techniques, and by proving a better competitive ratio than the previously best one.

Cite as

János Balogh, József Békési, György Dósa, Leah Epstein, and Asaf Levin. A New and Improved Algorithm for Online Bin Packing. In 26th Annual European Symposium on Algorithms (ESA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 112, pp. 5:1-5:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{balogh_et_al:LIPIcs.ESA.2018.5,
  author =	{Balogh, J\'{a}nos and B\'{e}k\'{e}si, J\'{o}zsef and D\'{o}sa, Gy\"{o}rgy and Epstein, Leah and Levin, Asaf},
  title =	{{A New and Improved Algorithm for Online Bin Packing}},
  booktitle =	{26th Annual European Symposium on Algorithms (ESA 2018)},
  pages =	{5:1--5:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-081-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{112},
  editor =	{Azar, Yossi and Bast, Hannah and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2018.5},
  URN =		{urn:nbn:de:0030-drops-94686},
  doi =		{10.4230/LIPIcs.ESA.2018.5},
  annote =	{Keywords: Bin packing, online algorithms, competitive analysis}
}
Document
Spanning Tree Congestion and Computation of Generalized Györi-Lovász Partition

Authors: L. Sunil Chandran, Yun Kuen Cheung, and Davis Issac

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
We study a natural problem in graph sparsification, the Spanning Tree Congestion (STC) problem. Informally, it seeks a spanning tree with no tree-edge routing too many of the original edges. For any general connected graph with n vertices and m edges, we show that its STC is at most O(sqrt{mn}), which is asymptotically optimal since we also demonstrate graphs with STC at least Omega(sqrt{mn}). We present a polynomial-time algorithm which computes a spanning tree with congestion O(sqrt{mn}* log n). We also present another algorithm for computing a spanning tree with congestion O(sqrt{mn}); this algorithm runs in sub-exponential time when m = omega(n log^2 n). For achieving the above results, an important intermediate theorem is generalized Györi-Lovász theorem. Chen et al. [Jiangzhuo Chen et al., 2007] gave a non-constructive proof. We give the first elementary and constructive proof with a local search algorithm of running time O^*(4^n). We discuss some consequences of the theorem concerning graph partitioning, which might be of independent interest. We also show that for any graph which satisfies certain expanding properties, its STC is at most O(n), and a corresponding spanning tree can be computed in polynomial time. We then use this to show that a random graph has STC Theta(n) with high probability.

Cite as

L. Sunil Chandran, Yun Kuen Cheung, and Davis Issac. Spanning Tree Congestion and Computation of Generalized Györi-Lovász Partition. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 32:1-32:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chandran_et_al:LIPIcs.ICALP.2018.32,
  author =	{Chandran, L. Sunil and Cheung, Yun Kuen and Issac, Davis},
  title =	{{Spanning Tree Congestion and Computation of Generalized Gy\"{o}ri-Lov\'{a}sz Partition}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{32:1--32:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.32},
  URN =		{urn:nbn:de:0030-drops-90361},
  doi =		{10.4230/LIPIcs.ICALP.2018.32},
  annote =	{Keywords: Spanning Tree Congestion, Graph Sparsification, Graph Partitioning, Min-Max Graph Partitioning, k-Vertex-Connected Graphs, Gy\"{o}ri-Lov\'{a}sz Theorem}
}
Document
First Fit bin packing: A tight analysis

Authors: György Dósa and Jiri Sgall

Published in: LIPIcs, Volume 20, 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)


Abstract
In the bin packing problem we are given an instance consisting of a sequence of items with sizes between 0 and 1. The objective is to pack these items into the smallest possible number of bins of unit size. FirstFit algorithm packs each item into the first bin where it fits, possibly opening a new bin if the item cannot fit into any currently open bin. In early seventies it was shown that the asymptotic approximation ratio of FirstFit bin packing is equal to 1.7. We prove that also the absolute approximation ratio for FirstFit bin packing is exactly 1.7. This means that if the optimum needs OPT bins, FirstFit always uses at most \lfloor 1.7 OPT \rfloor bins. Furthermore we show matching lower bounds for a majority of values of OPT, i.e., we give instances on which FirstFit uses exactly \lfloor 1.7 OPT \rfloor bins. Such matching upper and lower bounds were previously known only for finitely many small values of OPT. The previous published bound on the absolute approximation ratio of FirstFit was 12/7 \approx 1.7143. Recently a bound of 101/59 \approx 1.7119 was claimed.

Cite as

György Dósa and Jiri Sgall. First Fit bin packing: A tight analysis. In 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 20, pp. 538-549, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{dosa_et_al:LIPIcs.STACS.2013.538,
  author =	{D\'{o}sa, Gy\"{o}rgy and Sgall, Jiri},
  title =	{{First Fit bin packing: A tight analysis}},
  booktitle =	{30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)},
  pages =	{538--549},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-50-7},
  ISSN =	{1868-8969},
  year =	{2013},
  volume =	{20},
  editor =	{Portier, Natacha and Wilke, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2013.538},
  URN =		{urn:nbn:de:0030-drops-39630},
  doi =		{10.4230/LIPIcs.STACS.2013.538},
  annote =	{Keywords: Approximation algorithms, online algorithms, bin packing, First Fit}
}
  • Refine by Author
  • 2 Dósa, György
  • 1 Balogh, János
  • 1 Békési, József
  • 1 Chandran, L. Sunil
  • 1 Cheung, Yun Kuen
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Approximation algorithms
  • 1 Mathematics of computing → Graph algorithms
  • 1 Theory of computation → Graph algorithms analysis
  • 1 Theory of computation → Scheduling algorithms
  • 1 Theory of computation → Sparsification and spanners

  • Refine by Keyword
  • 2 online algorithms
  • 1 Approximation algorithms
  • 1 Bin packing
  • 1 First Fit
  • 1 Graph Partitioning
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 2 2018
  • 1 2013
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail