2 Search Results for "Liu, Zhengyang"


Document
Almost Optimal Distribution-Free Junta Testing

Authors: Nader H. Bshouty

Published in: LIPIcs, Volume 137, 34th Computational Complexity Conference (CCC 2019)


Abstract
We consider the problem of testing whether an unknown n-variable Boolean function is a k-junta in the distribution-free property testing model, where the distance between functions is measured with respect to an arbitrary and unknown probability distribution over {0,1}^n. Chen, Liu, Servedio, Sheng and Xie [Zhengyang Liu et al., 2018] showed that the distribution-free k-junta testing can be performed, with one-sided error, by an adaptive algorithm that makes O~(k^2)/epsilon queries. In this paper, we give a simple two-sided error adaptive algorithm that makes O~(k/epsilon) queries.

Cite as

Nader H. Bshouty. Almost Optimal Distribution-Free Junta Testing. In 34th Computational Complexity Conference (CCC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 137, pp. 2:1-2:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bshouty:LIPIcs.CCC.2019.2,
  author =	{Bshouty, Nader H.},
  title =	{{Almost Optimal Distribution-Free Junta Testing}},
  booktitle =	{34th Computational Complexity Conference (CCC 2019)},
  pages =	{2:1--2:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-116-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{137},
  editor =	{Shpilka, Amir},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2019.2},
  URN =		{urn:nbn:de:0030-drops-108249},
  doi =		{10.4230/LIPIcs.CCC.2019.2},
  annote =	{Keywords: Distribution-free property testing, k-Junta}
}
Document
Understanding PPA-Completeness

Authors: Xiaotie Deng, Jack R. Edmonds, Zhe Feng, Zhengyang Liu, Qi Qi, and Zeying Xu

Published in: LIPIcs, Volume 50, 31st Conference on Computational Complexity (CCC 2016)


Abstract
We consider the problem of finding a fully colored base triangle on the 2-dimensional Möbius band under the standard boundary condition, proving it to be PPA-complete. The proof is based on a construction for the DPZP problem, that of finding a zero point under a discrete version of continuity condition. It further derives PPA-completeness for versions on the Möbius band of other related discrete fixed point type problems, and a special version of the Tucker problem, finding an edge such that if the value of one end vertex is x, the other is -x, given a special anti-symmetry boundary condition. More generally, this applies to other non-orientable spaces, including the projective plane and the Klein bottle. However, since those models have a closed boundary, we rely on a version of the PPA that states it as to find another fixed point giving a fixed point. This model also makes it presentationally simple for an extension to a high dimensional discrete fixed point problem on a non-orientable (nearly) hyper-grid with a constant side length.

Cite as

Xiaotie Deng, Jack R. Edmonds, Zhe Feng, Zhengyang Liu, Qi Qi, and Zeying Xu. Understanding PPA-Completeness. In 31st Conference on Computational Complexity (CCC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 50, pp. 23:1-23:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{deng_et_al:LIPIcs.CCC.2016.23,
  author =	{Deng, Xiaotie and Edmonds, Jack R. and Feng, Zhe and Liu, Zhengyang and Qi, Qi and Xu, Zeying},
  title =	{{Understanding PPA-Completeness}},
  booktitle =	{31st Conference on Computational Complexity (CCC 2016)},
  pages =	{23:1--23:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-008-8},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{50},
  editor =	{Raz, Ran},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2016.23},
  URN =		{urn:nbn:de:0030-drops-58310},
  doi =		{10.4230/LIPIcs.CCC.2016.23},
  annote =	{Keywords: Fixed Point Computation, PPA-Completeness}
}
  • Refine by Author
  • 1 Bshouty, Nader H.
  • 1 Deng, Xiaotie
  • 1 Edmonds, Jack R.
  • 1 Feng, Zhe
  • 1 Liu, Zhengyang
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing
  • 1 Mathematics of computing → Discrete mathematics
  • 1 Mathematics of computing → Probabilistic algorithms
  • 1 Theory of computation → Probabilistic computation

  • Refine by Keyword
  • 1 Distribution-free property testing
  • 1 Fixed Point Computation
  • 1 PPA-Completeness
  • 1 k-Junta

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2016
  • 1 2019

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail