License
When quoting this document, please refer to the following
URN: urn:nbn:de:0030-drops-20332
URL: http://drops.dagstuhl.de/opus/volltexte/2009/2033/
Go to the corresponding Portal


Wenk, Carola ; Cook, Atlas F.

Shortest Path Problems on a Polyhedral Surface

pdf-format:
Document 1.pdf (370 KB)


Abstract

We develop algorithms to compute edge sequences, Voronoi diagrams, shortest path maps, the Fréchet distance, and the diameter for a polyhedral surface. Distances on the surface are measured either by the length of a Euclidean shortest path or by link distance. Our main result is a linear-factor speedup for computing all shortest path edge sequences on a convex polyhedral surface.

BibTeX - Entry

@InProceedings{wenk_et_al:DSP:2009:2033,
  author =	{Carola Wenk and Atlas F. Cook},
  title =	{Shortest Path Problems on a Polyhedral Surface},
  booktitle =	{Computational Geometry},
  year =	{2009},
  editor =	{Pankaj Kumar Agarwal and Helmut Alt and Monique Teillaud},
  number =	{09111},
  series =	{Dagstuhl Seminar Proceedings},
  ISSN =	{1862-4405},
  publisher =	{Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2009/2033},
  annote =	{Keywords: Shortest paths, edge sequences}
}

Keywords: Shortest paths, edge sequences
Seminar: 09111 - Computational Geometry
Issue Date: 2009
Date of publication: 23.06.2009


DROPS-Home | Fulltext Search | Imprint Published by LZI