License
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CSL.2015.549
URN: urn:nbn:de:0030-drops-54374
URL: http://drops.dagstuhl.de/opus/volltexte/2015/5437/
Go to the corresponding LIPIcs Volume Portal


Baelde, David ; Doumane, Amina ; Saurin, Alexis

Least and Greatest Fixed Points in Ludics

pdf-format:
34.pdf (0.6 MB)


Abstract

Various logics have been introduced in order to reason over (co)inductive specifications and, through the Curry-Howard correspondence, to study computation over inductive and coinductive data. The logic mu-MALL is one of those logics, extending multiplicative and additive linear logic with least and greatest fixed point operators. In this paper, we investigate the semantics of mu-MALL proofs in (computational) ludics. This framework is built around the notion of design, which can be seen as an analogue of the strategies of game semantics. The infinitary nature of designs makes them particularly well suited for representing computations over infinite data. We provide mu-MALL with a denotational semantics, interpreting proofs by designs and formulas by particular sets of designs called behaviours. Then we prove a completeness result for the class of "essentially finite designs", which are those designs performing a finite computation followed by a copycat. On the way to completeness, we investigate semantic inclusion, proving its decidability (given two formulas, we can decide whether the semantics of one is included in the other's) and completeness (if semantic inclusion holds, the corresponding implication is provable in mu-MALL).

BibTeX - Entry

@InProceedings{baelde_et_al:LIPIcs:2015:5437,
  author =	{David Baelde and Amina Doumane and Alexis Saurin},
  title =	{{Least and Greatest Fixed Points in Ludics}},
  booktitle =	{24th EACSL Annual Conference on Computer Science Logic (CSL 2015)},
  pages =	{549--566},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-90-3},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{41},
  editor =	{Stephan Kreutzer},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2015/5437},
  URN =		{urn:nbn:de:0030-drops-54374},
  doi =		{10.4230/LIPIcs.CSL.2015.549},
  annote =	{Keywords: proof theory, fixed points, linear logic, ludics, game semantics, completeness, circular proofs, infinitary proof systems}
}

Keywords: proof theory, fixed points, linear logic, ludics, game semantics, completeness, circular proofs, infinitary proof systems
Seminar: 24th EACSL Annual Conference on Computer Science Logic (CSL 2015)
Issue Date: 2015
Date of publication: 04.09.2015


DROPS-Home | Fulltext Search | Imprint Published by LZI