License
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX-RANDOM.2017.31
URN: urn:nbn:de:0030-drops-75808
URL: http://drops.dagstuhl.de/opus/volltexte/2017/7580/
Go to the corresponding LIPIcs Volume Portal


Bhattiprolu, Vijay ; Guruswami, Venkatesan ; Lee, Euiwoong

Sum-of-Squares Certificates for Maxima of Random Tensors on the Sphere

pdf-format:
LIPIcs-APPROX-RANDOM-2017-31.pdf (0.7 MB)


Abstract

For an n-variate order-d tensor A, define A_{max} := sup_{||x||_2 = 1} <A,x^(otimes d)>, to be the maximum value taken by the tensor on the unit sphere. It is known that for a random tensor with i.i.d. +1/-1 entries, A_{max} <= sqrt(n.d.log(d)) w.h.p. We study the problem of efficiently certifying upper bounds on A_{max} via the natural relaxation from the Sum of Squares (SoS) hierarchy. Our results include: * When A is a random order-q tensor, we prove that q levels of SoS certifies an upper bound B on A_{max} that satisfies B <= A_{max} * (n/q^(1-o(1)))^(q/4-1/2) w.h.p. Our upper bound improves a result of Montanari and Richard (NIPS 2014) when q is large. * We show the above bound is the best possible up to lower order terms, namely the optimum of the level-q SoS relaxation is at least A_{max} * (n/q^(1+o(1)))^(q/4-1/2). * When A is a random order-d tensor, we prove that q levels of SoS certifies an upper bound B on A_{max} that satisfies B <= A_{max} * (n*polylog/q)^(d/4 - 1/2) w.h.p. For growing q, this improves upon the bound certified by constant levels of SoS. This answers in part, a question posed by Hopkins, Shi, and Steurer (COLT 2015), who tightly characterized constant levels of SoS.

BibTeX - Entry

@InProceedings{bhattiprolu_et_al:LIPIcs:2017:7580,
  author =	{Vijay Bhattiprolu and Venkatesan Guruswami and Euiwoong Lee},
  title =	{{Sum-of-Squares Certificates for Maxima of Random Tensors on the Sphere}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)},
  pages =	{31:1--31:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-044-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{81},
  editor =	{Klaus Jansen and Jos{\'e} D. P. Rolim and David Williamson and Santosh S. Vempala},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2017/7580},
  URN =		{urn:nbn:de:0030-drops-75808},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2017.31},
  annote =	{Keywords: Sum-of-Squares, Optimization over Sphere, Random Polynomials}
}

Keywords: Sum-of-Squares, Optimization over Sphere, Random Polynomials
Seminar: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)
Issue Date: 2017
Date of publication: 31.07.2017


DROPS-Home | Fulltext Search | Imprint Published by LZI