Deep Continual Learning (Dagstuhl Seminar 23122)

Authors Tinne Tuytelaars, Bing Liu, Vincenzo Lomonaco, Gido van de Ven, Andrea Cossu and all authors of the abstracts in this report



PDF
Thumbnail PDF

File

DagRep.13.3.74.pdf
  • Filesize: 1.74 MB
  • 18 pages

Document Identifiers

Author Details

Tinne Tuytelaars
  • KU Leuven, BE
Bing Liu
  • University of Illinois - Chicago, US
Vincenzo Lomonaco
  • University of Pisa, IT
Gido van de Ven
  • KU Leuven, BE
Andrea Cossu
  • University of Pisa, IT
and all authors of the abstracts in this report

Cite AsGet BibTex

Tinne Tuytelaars, Bing Liu, Vincenzo Lomonaco, Gido van de Ven, and Andrea Cossu. Deep Continual Learning (Dagstuhl Seminar 23122). In Dagstuhl Reports, Volume 13, Issue 3, pp. 74-91, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/DagRep.13.3.74

Abstract

This report documents the program and the outcomes of Dagstuhl Seminar 23122 "Deep Continual Learning". This seminar brought together 26 researchers to discuss open problems and future directions of Continual Learning. The discussion revolved around key properties and the definition of Continual Learning itself, on the way Continual Learning should be evaluated, and on its real-world applications beyond academic research.

Subject Classification

ACM Subject Classification
  • Computing methodologies → Learning settings
  • Computing methodologies → Neural networks
Keywords
  • continual learning
  • incremental learning

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads