A nested radical with terms $a_1, a_2, \ldots , a_N$ is an expression of form $\sqrt{a_N + \cdots + \sqrt{a_2 + \sqrt{a_1}}}$. The limit as $N$ approaches infinity of such an expression, if it exists, is called a continued radical. We consider the set of real numbers $S(M)$ representable as a continued radical whose terms $a_1, a_2, \ldots$ are all from a finite set $M$ of nonnegative real numbers. We give conditions on the set $M$ for $S(M)$ to be (a) an interval, and (b) homeomorphic to the Cantor set.
@InProceedings{johnson_et_al:DagSemProc.04351.10, author = {Johnson, Jamie and Richmond, Tom}, title = {{Continued Radicals}}, booktitle = {Spatial Representation: Discrete vs. Continuous Computational Models}, pages = {1--4}, series = {Dagstuhl Seminar Proceedings (DagSemProc)}, ISSN = {1862-4405}, year = {2005}, volume = {4351}, editor = {Ralph Kopperman and Michael B. Smyth and Dieter Spreen and Julian Webster}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.04351.10}, URN = {urn:nbn:de:0030-drops-1286}, doi = {10.4230/DagSemProc.04351.10}, annote = {Keywords: Continued radical} }
Feedback for Dagstuhl Publishing