The field of multi-stage stochastic programming provides a rich modelling framework to tackle a broad range of real-world decision problems. In order to numerically solve such programs - once they get reasonably large - the infinite-dimensional optimization problem has to be discretized. The stochastic optimization program generally consists of an optimization model and a stochastic model. In the multi-stage case the stochastic model is most commonly represented as a multi-variate stochastic process. The most common technique to calculate an useable discretization is to generate a scenario tree from the underlying stochastic process. In the first part of the talk we take a look at scenario optimization from the viewpoint of a decision taker, to provide rather non-technical insights into the problem. In the second part of the talk we examplify scenario tree generation by reviewing one specific algorithm based on multi-dimensional facility location applying backward stagewise clustering. An example from the area of financial engineering concludes the talk.
@InProceedings{hochreiter:DagSemProc.05031.26, author = {Hochreiter, Ronald}, title = {{Scenario Optimization for Multi-Stage Stochastic Programming Problems}}, booktitle = {Algorithms for Optimization with Incomplete Information}, pages = {1--3}, series = {Dagstuhl Seminar Proceedings (DagSemProc)}, ISSN = {1862-4405}, year = {2005}, volume = {5031}, editor = {Susanne Albers and Rolf H. M\"{o}hring and Georg Ch. Pflug and R\"{u}diger Schultz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.05031.26}, URN = {urn:nbn:de:0030-drops-614}, doi = {10.4230/DagSemProc.05031.26}, annote = {Keywords: Stochastic programming, scenario generation, facility location, financial engineering} }
Feedback for Dagstuhl Publishing