DagSemProc.05051.8.pdf
- Filesize: 361 kB
- 20 pages
An example-trace is a sequence of steps taken by a program on a given example input. Different approaches exist in order to exploit example-traces for learning, all explicitly inferring a target program from positive and negative traces. We generalize such idea by developing similarity measures betweeen traces in order to learn to discriminate between positive and negative ones. This allows to combine the expressiveness of inductive logic programming in representing knowledge to the statistical properties of kernel machines. Logic programs will be used to generate proofs of given visitor programs which exploit the available background knowledge, while kernel machines will be employed to learn from such proofs.
Feedback for Dagstuhl Publishing